Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
I. Описательная статистика
1. Задачи описательной статистики - классификация данных, построение распределения их частот, выявление центральных тенденций этого распределения и оценка разброса данных относительно средних. 2. Для классификации данных сначала располагают их в возрастающем порядке. Далее их разбивают на классы по величине, интервалы между которыми определяются в зависимости от того, что именно иследователь хочет выявить в данном распределении. 3. К наиболее часто используемым параметрам, с помощью которых можно описать распределение, относятся, с одной стороны, такие величины, как мода, медиана и средняя арифметическая, а с другой -показатели разброса, такие как варианса (дисперсия) и стандартное отклонение. 4. Мода соответствует значению, которое встречается чаще других или находится в середине класса, обладающего наибольшей частотой. Медиана соответствует значению центрального данного, которое может быть получено после того, как все данные будут расположены в возрастающем порядке. Средняя арифметическая равна частному от деления суммы всех данных на их число. Распределение считается нормальным, если кривая распределения имеет колоколообразный вид, а все показатели центральной тенденции совпадают, что свидетельствует о симметричности распределения. 5. Диапазон распределения (размах вариаций) равен разности между наибольшим и наименьшим значениями результатов. 6. Среднее отклонение-это более точный показатель разброса, чем диапазон распределения. Для расчета среднего отклонения вычисляют среднюю разность между всеми значениями данных и средней арифме- Cinciiniu тики и обработки дачных 313 тической, или, упрощенно, Среднее отклонение = 7. Еще один показатель разброса, вычисляемый из среднего отклонения,-это варианса (дисперсия), равная среднему квадрату разностей между значениями всех данных и средней: Yd2 Варианса = ——. п 8. Наиболее употребительным показателем разброса служит стандартное отклонение, равное квадратному корню из вариансы. Таким образом, это квадратный корень из суммы квадратов всех отклонений от средней: Стандартное отклонение = или п V п - 1 9. Важное свойство стандартного отклонения заключается в том. что независимо от его абсолютной величины в нормальном распределении оно всегда соответствует одинаковому проценту данных, располагающихся по обе стороны от средней: 68% результатов располагаются в пределах одного стандартного отклонения в обе стороны от средней, 95%-в пределах двух стандартных отклонений и 99,7%-в пределах трех стандартных отклонений. 10. С помощью перечисленных выше показателей можно осуществить оценку различий между двумя или несколькими распределениями, позволяющую проверить, насколько эти различия могут быть экстраполированы на популяцию, из которой взяты выборки. Для этого применяют методы индуктивной статистики. Date: 2015-09-22; view: 366; Нарушение авторских прав |