Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Индукция и дедукция. Формализация и математизация
Индукция- способ рассуждения или метод получения знаний, при котором общий вывод делается на основе обобщения частных посылок. Индукция может полной и неполной. Дедукция –способ рассуждения или метод движения знания от частного, т. е. процесс логического перехода от общих посылок к заключениям о частных случаях. Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента. Непосредственной основой индуктивного умозаключения является повторяемость признаков в ряду предметов определенного класса. Заключение по индукции представляет собой вывод об общих свойствах всех предметов, относящихся к данному классу, на основании наблюдения достаточно широкого множества единичных фактов. Обычно индуктивные обобщения рассматриваются как опытные истины, или эмпирические законы. Дедукция - метод научного познания, который заключается в переходе от некоторых общих посылок к частным результатам-следствиям. Умозаключение по дедукции строится по следующей схеме; все предметы класса «А» обладают свойством «В»; предмет «а» относится к классу «А»; значит «а» обладает свойством «В». В целом дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Формализация и математизация науки. Формализация дает определенный выигрыш в развитии науки, но есть и отрицательные моменты. Математизация науки–математическому описанию поддаются те области, которые подверглись обработке формально логическим инструментом. Природа объединяется и лишается качественных и существенных характеристик. Математика не оставляет предметам никаких свойств, лишает предметы индивидуальности. Выхолащивание природных определений достигает в математике высших значений. Математизация и формализация унифицирует личность, подводит ее под какой-то стандарт. Паскаль–боится, что когда-нибудь его самого примут за теорему, т.е. попытаются его разгадать, распознать. Одна из характерных тенденций современной науки – ее усиленная математизация: все более широкое применение языка математики и математических методов исследования в самых различных отраслях научного познания. Это связано с тем, что без познания количественных отношений в изучаемых объектах нельзя правильно отразить его качественную специфику и закономерности развития. Эти количественные отношения и есть предмет математики. Её применение в науке придает знаниям строгость и точность. Отмечая это, И.Кант утверждал, что в науке столько истины, сколько в ней математики. К.Маркс подчеркивал, что наука только тогда достигает своих вершин, точности и совершенства, когда ей удается пользоваться математикой. При этом следует иметь в виду, что применение математического аппарата возможно на сравнительно высоком уровне развития той или иной науки, когда описательный метод в ней становится подчиненным. Математическое кодирование явлений природы и общества позволяет понимать, управлять и предсказывать ход реальных процессов. В истории культуры это первым осознал выдающийся древнегреческий мыслитель и математик Пифагор. Он обнаружил, что высота музыкального тона инструмента связана числовой зависимостью с ее длиной. Более того, он считал, что простые числа и геометрические фигуры, заключающие в себе соразмерность, или гармонии, являются началами мира. Эти идеи через Платона, Коперника и Дж.Бруно подхватил и развил один из основателей классической механики Г.Галилей. Галилей подчеркивал, что ученый, который пожелает решить проблемы естествознания, без математики столкнется с непреодолимой задачей. Тем не менее, нельзя абсолютизировать роль математики в естествознании. Математические формулы сами по себе абстрактны и лишены конкретного содержания. Только согласованные с научным наблюдением и экспериментом научные исследования наполняют математические формулы конкретным содержанием. В эпоху бурного развития естествознания в конце XIX – начале XX века математика стала служить средством получения простых (изящных, красивых) законов о сложных явлениях природы. В ХХ веке, когда естествоиспытатели столкнулись со сложными закономерностями микромира, математика стала для них средством проведения эксперимента. Если физический объект правильно выражен формулой и если правила математических преобразований согласованы с изучаемыми физическими процессами, то физические преобразования объектов могут быть заменены математическими преобразованиями исходных формул. В этом случае результаты математических преобразований будут как бы автоматически соответствовать физическим экспериментам, то есть математика выполняет в научном познании эвристическую, познавательную функцию. Необходимо отметить, что роль математики различна в разнообразных областях научного познания. Традиционно высока ее роль в физике, особенно в сфере установления общих законов природы, теории элементарных частиц, астрономии, космологии и т.д. К примеру, впервые нестационарное (эволюционное) поведение Вселенной было доказано русским математиком А.Фридманом в 1924 году, как логическое следствие теории относительности А.Эйнштейна, хотя сам А.Эйнштейн в общей теории относительности первоначально создавал модель стационарной Вселенной. Кроме того, математические расчеты эффектов относительности (релятивизма) впервые были обоснованы французским математиком А.Пуанкаре задолго до изложения А.Эйнштейна, но эти расчеты были столь сложны, что не нашли отклика научной общественности. Принципиальная применимость математических методов в различных областях научного познания имеет свою объективную основу в единстве количественной и качественной определенности всех явлений объективного мира. Степень этой применимости определяется мерой возможного абстрагирования (отвлечения) количественной стороны явления от его качественной специфики. Поэтому при изучении сложных социальных явлений, таких как нормы морали или законы искусства, политические процессы и т.п. применение математики весьма ограничено или практически невозможно. В современном научном познании роль математики непрерывно возрастает, ее аппарат совершенствуется, а язык ее становится очень своеобразным и сложным, недоступным для неспециалистов. В последние десятилетия все чаще встречается чисто математическое творчество в физике, в синергетике. Необходимо, однако, помнить, что математические формализмы не являются самоцелью в научном познании, они – всего лишь вспомогательное средство познания процессов природы и организации научного знания. Наиболее широко и эффективно применимы в современном естествознании математические методы теоретического исследования: аксиоматический метод, метод математической гипотезы и математического моделирования. В настоящее время математическое моделирование часто осуществляется с использованием компьютерной техники. Широко используемые в современной науке математические описания различных объектов, процессов, являются ярким примером формализации. Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков). При этом математическая и другая символика не только помогает точно выразить и закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальнейшего их познания. Для построения любой формальной системы необходимо: а) задание алфавита, т.е. определенного набора знаков; б) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»; в) задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода). В результате создается формальная знаковая система в виде определенного искусственного языка. Важным достоинством этой системы является возможность проведения в ее рамках исследования какого-либо объекта чисто формальным путем (через оперирование знаками, формулами) без непосредственного обращения к этому объекту. Здесь отношения знаков заменяют собой высказывания о свойствах и отношениях объектов. Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею. Вряд ли удалось бы успешно пользоваться, например, теоретическими выводами Максвелла, если бы они не были компактно выражены в виде математических уравнений, а описывались бы с помощью обычного, естественного языка. Разумеется, формализованные искусственные языки не обладают гибкостью и богатством языка естественного. Зато в них отсутствует многозначность терминов (полисемия), свойственная естественным языкам. Они характеризуются точно построенным синтаксисом (устанавливающим правила связи между знаками безотносительно их содержания) и однозначной семантикой (семантические правила формализованного языка вполне однозначно определяют соотнесенность знаковой системы с определенной предметной областью). Таким образом, формализованный язык обладает свойством моносемичности. Возможность представить те или иные теоретические положения науки в виде формализованной знаковой системы имеет большое значение для познания. Но при этом следует иметь в виду, что формализация той или иной теории возможна только при учете ее содержательной стороны. Только в этом случае могут быть правильно применены те или иные формализмы. Голое математическое уравнение еще не представляет научной теории. Чтобы получить научную теорию, необходимо придать математическим символам конкретное эмпирическое содержание. Поучительным примером формально полученного и, на первый взгляд, «бессмысленного» результата, который обнаружил впоследствии весьма глубокий физический смысл, являются решения уравнения Дирака, описывающего движение электрона. Среди этих решений оказались такие, которые соответствовали состояниям с отрицательной кинетической энергией. Позднее было установлено, что указанные решения описывали поведение неизвестной дотоле частицы – позитрона, являющегося антиподом электрона. В данном случае некоторое множество формальных преобразований привело к содержательному и интересному для науки результату. Расширяющееся использование формализации как метода теоретического познания связано не только с развитием математики. В химии, например, соответствующая химическая символика вместе с правилами оперирования ею явилась одним из вариантов формализованного искусственного языка. Все более важное место метод формализации занимал в логике по мере ее развития. Труды Лейбница положили начало созданию метода логических исчислений. Последний привел к формированию в середине XIX века математической логики, которая во второй половине ХХ столетия сыграла важную роль в развитии кибернетики, в появлении электронных вычислительных машин, в решении задач автоматизации производства и т.д. Date: 2015-09-18; view: 661; Нарушение авторских прав |