Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Второй закон и чёрные дыры
Вернёмся теперь к взглядам Уилера на чёрные дыры. В начале 1970-х годов Уилер заметил, что когда чёрные дыры выплывают на сцену, Второй закон начинает сдавать свои позиции. По-видимому, наличие близлежащей чёрной дыры даёт готовый и надёжный способ уменьшить общую энтропию. Поместите в чёрную дыру любую изучаемую вами систему — битое стекло, потухшую свечку, расплывшиеся чернила. Так как ничего не может покинуть её пределы, беспорядок в системе окажется, по-видимому, навсегда исчезнувшим. Возможно, что такой подход несовершенен, но кажется, он легко понизит энтропию, окажись у вас под рукой чёрная дыра. Многие посчитали, что Второй закон столкнулся с достойным соперником. Но студента Бекенштейна это не убедило. Возможно, предложил Бекенштейн, энтропия не пропадает в чёрной дыре, а просто каким-то образом в неё трансформируется. Кроме того, никто не утверждал, что поглощая пыль и звёзды, чёрные дыры приводят к нарушению Первого закона термодинамики, сохранению энергии. Наоборот, уравнения Эйнштейна показывают, что при поглощении вещества чёрная дыра становится больше и тяжелее. Энергия может перераспределиться, часть из неё упадёт в чёрную дыру, а часть останется снаружи, но общее количество сохранится. Может быть, предложил Бекенштейн, эта же идея применима и к энтропии. Часть энтропии остаётся снаружи чёрной дыры, а другая часть падает внутрь, но ничего не исчезает бесследно. Это звучит разумно, но эксперты идею не одобрили. Найденное Шварцшильдом решение и последующие разработки говорят, по всей видимости, о том, что чёрные дыры — это последнее слово в стане порядка. Каким бы перемешанным и неупорядоченным не было падающее внутрь вещество и излучение, оно сжимается в бесконечно малый объём в центре чёрной дыры: чёрная дыра — это окончательный этап в упорядоченном сжатии мусора. По правде говоря, никто не знает, что происходит во время такого мощного сжатия, потому что экстремальная кривизна и плотность делают уравнения Эйнштейна непригодными; однако совсем не кажется, что в центре чёрной дыры может быть какой-то беспорядок. А за пределами своего центра чёрная дыра — просто пустая область пространства-времени, простирающаяся до границы невозврата — горизонта событий (рис. 9.1): Нет никаких снующих туда-сюда молекул и атомов, поэтому перегруппировываться нечему; кажется, что чёрная дыра вообще лишена энтропии.
Рис. 9.1. Чёрная дыра вмещает область пространства-времени, окружённую поверхностью невозврата — горизонтом событий
В 1970-х годах такая точка зрения была подкреплена так называемыми теоремами об отсутствии волос, которые на математическом языке утверждают, что чёрным дырам (подобно лысым фантомасам) недостаёт отличительных характеристик. Согласно этим теоремам любые две чёрные дыры, обладающие одинаковыми массами, зарядами и угловыми моментами (скоростью вращения), неразличимы. В отсутствие характерных отличительных черт — у фантомасов также нет чёлок, усов или дрэдов — чёрные дыры не имеют различий, в которых могла быть запасена энтропия. Это был вполне убедительный аргумент сам по себе, но затем появилось ещё более убийственное рассуждение, которое, как казалось, полностью сводило на нет идею Бекенштейна. Согласно основным положениям термодинамики между температурой и энтропией есть тесная связь. Температура — это мера усреднённого движения составных частей данного объекта: компоненты разогретых объектов движутся быстро, компоненты холодных объектов движутся медленно. Энтропия является мерой возможных перегруппировок этих компонентов, которые с макроскопической точки зрения останутся незамеченными. Таким образом, как энтропия, так и температура зависят от совокупных свойств рассматриваемого объекта; они идут рука об руку. Если рассмотреть вопрос математически, то станет ясно, что если Бекенштейн прав и чёрные дыры обладают энтропией, то у них должна быть температура.103 Именно это и вызвало тревогу. Любой объект с ненулевой температурой должен излучать. Горячий уголь излучает видимый свет; люди, как правило, излучают в инфракрасном диапазоне. Если чёрная дыра обладает ненулевой температурой, то сами законы термодинамики, которые Бекенштейн хотел сохранить, говорят, что она тоже должна излучать. Но это вопиющим образом противоречит принятому пониманию, что ничего не может вырваться из гравитационной хватки чёрной дыры. Почти все решили, что Бекенштейн ошибается. У чёрных дыр нет температуры. У них нет энтропии. Чёрные дыры — это сточная воронка для энтропии. В присутствии чёрных дыр нарушается Второй закон термодинамики. Несмотря на многочисленные аргументы против, в пользу Бекенштейна говорил один замечательный результат. В 1971 году Стивен Хокинг осознал, что чёрные дыры подчиняются занятному правилу. Если имеется набор чёрных дыр разных размеров и масс, и при этом некоторые размеренно вальсируют по орбитам, другие подкрепляются веществом и излучением, а остальные сталкиваются друг с другом, то полная площадь поверхности всех чёрных дыр со временем возрастает. Под «площадью поверхности» Хокинг подразумевал площадь горизонта событий каждой чёрной дыры. В физике есть много результатов насчёт того, что какие-то величины не изменяются во времени (закон сохранения энергии и импульса, сохранение заряда и так далее), но также имеется небольшое число соотношений, которые диктуют рост величин. Поэтому естественно рассмотреть возможную связь между результатом Хокинга и Вторым законом. Если считать, что каким-то образом площадь поверхности чёрной дыры является мерой её энтропии, то возрастание площади полной поверхности может рассматриваться как рост полной энтропии. Это была очень привлекательная аналогия, но никто не счёл её убедительной. Почти все считали, что сходство теоремы Хокинга о площади со Вторым законом не более чем случайность. Это положение сохранялось до того момента, пока несколько лет спустя Хокинг не сделал одно из самых важных вычислений в современной теоретической физике.
Date: 2015-09-05; view: 302; Нарушение авторских прав |