Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Глава 5 НАНОТЕХНОЛОГИИ





Прощай, ХХ век!..

Век квантово-релятивистской механики и ускорителей элементарных частиц, генетики и молекулярной биологии, космических аппаратов и Интернета, но также век атомной бомбы, геноцида и масштабных техногенных катастроф. Что получаем мы, люди XXI в., в наследство от ушедшего столетия?

Минувший век ознаменовался торжеством естественных наук, их высоким авторитетом, общественный престиж науки вообще и образования был чрезвычайно высок практически во всех странах мира, что было закономерно связано с успехами в фундаментальных и прикладных науках. Человечество как никогда близко подошло к разгадке тайн Вселенной, при этом компетентные и научно обоснованные решения чисто бытовых проблем человечества серьезно улучшили условия его обитания в окружающей природной среде. ХХ век был вообще веком масштабов, веком укрупнения и объединения. На фоне объединения государств, капиталов и создания транснациональных корпораций было естественным и объединение усилий ученых по решению актуальных научных проблем: отныне они решаются коллективами ученых, гениальные ученые-одиночки остались в XIX в.

Во второй половине ХХ в. был дан старт реализации нескольких долговременных научных программ, важность которых для развития науки и для человечества в целом не вызывает сомнения. Выполнение их продолжается и в настоящее время, а завершение работ по ним (если оно вообще возможно, так как в рамках этих программ ставятся все новые и новые актуальные задачи) планируется в середине XXI в. Таковой является программа исследования космоса. Объединение усилий научных коллективов разных стран мира для исследования как ближайшего космоса, так и отдаленных уголков Вселенной привело в результате реализации этой программы к созданию международных космических станций, использованию на них новейшего оборудования и т. д.

К таким программам относится также грандиозная по замыслу, а также по объемам денежных вложений международная программа «Геном человека», целью которой является расшифровка генного кода человека (и не только человека: параллельно развиваются программы «Геномы животных»). Успешно реализуются международные экологические программы, международные программы мониторинга объектов окружающей среды и т. д. Вот далеко не полный перечень успешных научных проектов, начатых в прошлом веке, в которые были вовлечены ученые разных стран.

Следует, однако, отметить, что деловые круги различных стран мира, вкладывающие средства в реализацию научных программ, интересует не столько идея объединения ученых, сколько борьба за техническое лидерство в наиболее доходных отраслях промышленности, таких как компьютерная техника, системы связи, автомобилестроение, авиационная, медицинская и фармацевтическая промышленности. Примером сплава науки и техники является интереснейшая и перспективнейшая научная программа, впечатляющие достижения которой удивляли мир в последние два десятилетия XX в. и которая, по мнению многих ученых, приведет к следующей промышленной революции. В названии этой программы отражен ее прикладной характер. Она называется «Развитие нанотехнологий».

Что же это такое – нанотехнологии?

Название нового направления в науке возникло просто в результате добавления к общему понятию «технология» приставки «нано». «Нано», так же как и «милли», и «микро», – приставки к выражениям единиц линейных размеров для создания производных этих единиц в системе СИ, причем в сторону уменьшения линейных размеров: например, 1 миллиметр (мм) означает одну тысячную долю метра (1 мм = 10-3 м), 1 микрометр (другое название – микрон) составляет одну миллионную долю метра (1 мкм = 10-6 м), а 1 нанометр (нм) означает одну миллиардную долю метра (1 нм = 10-9 м).

Для наглядности можно указать, что 1 нм составляет одну миллионную долю миллиметра (представим себе любой измеритель длины с делениями – линейки, рулетки, штангенциркули и т. п.), и если считается, что человеческий волос имеет в среднем диаметр 100 мкм, то 1 нм примерно в 100 тысяч раз меньше его толщины. Или еще можно сказать так: величины, измеряемые в нанометрах, на 9 порядков меньше величин, сравнимых по размерам с человеческим телом.

К нанотехнологиям принято относить процессы и объекты с характерной длиной от 1 до 100 нм. Верхняя граница нанообласти соответствует минимальным элементам в так называемых БИС (больших интегральных схемах), широко применяемым в полупроводниковой и компьютерной технике. Что касается нижней границы, то размером в 1 нм и около того обладают отдельно взятые молекулы; при этом интересно, что радиус знаменитой двойной спирали молекулы ДНК равен 1 нм, а многие вирусы имеют размер приблизительно 10 нм.


Для понятия «нанотехнология», пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии, оперирующие величинами порядка нанометра, имеют дело с ничтожно малыми величинами, в сотни раз меньшими длины волны видимого света и сопоставимыми с размерами атомов. Поэтому переходот «микро» к «нано» – это уже не количественный, а качественный переход, скачок от манипуляции веществом к манипуляции отдельными атомами. Квантовая физика XX в. при изучении объектов микромира оперировала в основном их математическими моделями. Теперь ученые могут оперировать объектами микромира непосредственно: искусственно создавать микрообъекты, перемещать их в пространстве, закреплять их на поверхности, то есть действовать так, как будто мы имеем дело с привычными нам макрообъектами.

В научных центрах мира развитие нанотехнологий как технологий изготовления сверхмикроскопических конструкций из мельчайших частиц материи идет в основном по трем направлениям: изготовление электронных схем (в том числе и объемных) с активными элементами, величиной примерно со среднюю молекулу; разработка и изготовление наномашин, то есть механизмов и роботов такого же размера; непосредственная манипуляция атомами и молекулами и сборка из них всего сущего. Именно поэтому они представляются весьма перспективными для получения новых конструкционных материалов, полупроводниковых приборов, устройств для записи информации, ценных фармацевтических препаратов и т. д. Нанотехнологии могут привести мир к новой технологической революции и изменить среду обитания человека.

Из сказанного ясно, что нанотехнологии объединяют все связанные непосредственно с атомами и молекулами технические процессы, осуществляемые и изучаемые в разных естественных науках. Тем самым подчеркивается междисциплинарный характер нового направления в естествознании. Наряду с другими междисциплинарными научными направлениями в естествознании – синергетикой, кибернетикой, системным методом – развитие нанотехнологий является очень ценным научным наследием XX в., неким связующим звеном, обеспечивающим преемственность научных направлений в современном естествознании.

По мнению многих источников по истории естествознания, начало нанонауки положил в 1959 г. знаменитый американский физик, лауреат Нобелевской премии РичардФ. Фейнман при прочтении лекции под названием «Внизу полным-полно места». В ней впервые была рассмотрена возможность создания веществ (а затем, естественно, отдельных элементов, деталей и целых устройств) совершенно новым способом, а именно «атомной укладкой», при которой человек манипулирует нужными атомами поштучно, располагая их в требуемом ему порядке.

В 1986 г. американский физик Эрик К. Дрекслер в своей известной книге «Машины творения» предложил создавать устройства, названные им «молекулярными машинами», и раскрыл удивительные возможности, связанные с развитием нанотехнологии. Начиная с 1980 г. в технологии производства транзисторов и лазеров все чаще стали использоваться искусственно создаваемые пленки толщиной около 10 нм, что позволяло изготавливать устройства с новыми, повышенными техническими характеристиками. В 1980 г. в Японии был изготовлен первый полевой транзистор с высокой подвижностью носителей (High Electron Mobility Transisteor, HEMT).


В 1981 г. сотрудники фирмы IBM создали сканирующий туннельный микроскоп (СТМ), позволявший получать изображение с разрешением на уровне размеров отдельных атомов. Это явилось исключительно важным научным достижением, поскольку исследователи впервые получили возможность непосредственно наблюдать и изучать мир в нанометровом, атомарном масштабе. Как работает СТМ? Экспериментатор подводит тончайший золотой щуп (зонд, пробник) на расстояние около 1 мкм к поверхности исследуемого образца, в результате чего между зондом и поверхностью возникает электрический ток, обусловленный квантово-механическим туннельным эффектом, величина которого меняется в зависимости от состояния изучаемой поверхности (например, из-за наличия на поверхности впадин или выступов). Меняя величину туннельного тока или, наоборот, сохраняя ее постоянной (за счет регулирования потенциала зонда), экспериментатор может «сканировать» поверхность и получать ее прямое «изображение», подобно тому как электронный луч создает изображение, сканируя поверхность экрана обычного телевизора. Этот методпозволяет не только изучать атомарную структуру поверхности, но и проводить разнообразные и весьма ценные физические эксперименты (например, можно проверять теоретические расчеты, относящиеся к изменению поверхности в определенных условиях, и т. п.).

Работая со сканирующим микроскопом описываемого типа, экспериментаторы неожиданно вышли на следующий этап развития, а именно стали проводить прямые технологические операции на атомарном уровне. Прикладывая к зонду СТМ соответствующее напряжение, его можно использовать в качестве своеобразного атомного «резца» или гравировального инструмента. Впервые это удалось сделать в США сотрудникам Армаденской лаборатории 1MB под руководством Д. Эйглера, которые сумели выложить на поверхности монокристалла никеля название своей фирмы из 35 атомов ксенона. Это стало своеобразным рекордом в методах миниатюризации записи «текста». Позднее, в 1991 г., из этого выросла методика перемещения атомов ксенона вверх-вниз (относительно поверхности монокристалла), названная атомным переключением (atomic switch). В целом описанная техника создает много возможностей как для манипуляций на уровне отдельных атомов, так и для изучения их структур и поведения.

Японские фирмы и научные организации в свою очередь начали энергично развивать методики в области микроскопии, в результате чего за короткое время были созданы новые типы сканирующих туннельных микроскопов, а также электронных микроскопов с очень высоким разрешением (разрешением оптического прибора физики называют размер наименьшей детали, которую можно выделить на получаемом изображении), позволяющих исследовать движение отдельных атомов и молекул. Это привело к энергичному развитию экспериментальной техники в нанометровом диапазоне и значительно расширило представления ученых о микромире и нанообъектах.


В 1990 г. началась реализация огромного международного проекта по определению последовательности укладки около 3 млрд нуклеотидных остатков в записи генетической информации – проекта «Геном человека», ставшего ярким прорывом в биологии и медицине. Этот проект одновременно является исключительно важным для развития нанотехнологий, поскольку открывает новые огромные возможности в информационных технологиях, позволяя понять, а затем и использовать принципы обработки информации в живой природе (биоинформатика). В 1991 г. в Японии начала осуществляться первая государственная программа по развитию техники манипулирования атомами и молекулами (проект «Атомная технология»), которая привлекла внимание исследователей во многих странах мира. Это ознаменовало новый этап в развитии нанонауки и нанотехнологий: государство стало поддерживать направление, признав его приоритетность не только для национальной науки, но и для государства в целом.

В настоящее время нанотехнологии все больше и больше входят в нашу жизнь. Нанотехнологический контроль изделий и материалов, буквально на уровне атомов, в некоторых областях промышленности стал обыденным делом. Реальный пример – DVD-диски, производство которых было бы невозможно без нанотехнологического контроля матриц. Очень популярны в промышленных устройствах очистки питьевой воды и получении сверхчистой воды так называемые нанофильтрационные мембранные фильтры, позволяющие задерживать частицы молекулярного размера. Стали реальностью квантовые точки в технологии получения полупроводников, которые эффективнее известных в 1000 раз. Этот список можно продолжить:

♦ «нанотрубки» и «нанонити» («нановолокна»), состоящие из 6070 молекул, как новое состояние поверхности вещества и создание сверхлегких материалов;

♦ нанозеркало для лазеров со сверхвысокой отражающей способностью;

♦ атомная игла – сверхтонкая игла, сужающаяся на острие едва ли не до единственного атома, которая как атомный щуп изучает рельеф поверхности на молекулярном уровне;

♦ нанороботы-манипуляторы, создающие разные типы поверхностей путем переноса отдельных молекул;

♦ наногенераторы электрического заряда внутри человеческого организма для электропитания имплантатов;

♦ сверхскоростной нано-Интернет с потенциалом увеличения скорости в сотни раз;

♦ диагностика качества пищевых продуктов с помощью наносенсоров (квантовых точек) для выявления опасных химических или биологических загрязнителей пищевых продуктов;

♦ наногранулы, которые внутри человеческого тела доставляют молекулу лекарственного препарата не просто к органу-мишени, но прямо к рецептору, который, по сути, также является молекулой и отвечает за реализацию физиологического эффекта;

♦ нанокод, то есть молекулы антител, иммобилизованные на поверхности нанонитей для идентификации антигенов (то есть чужеродных веществ) по иммунной реакции;

♦ наночастицы косметического крема, проходящие через мембраны клеток кожи, для настоящего клеточного питания дермы – и это далеко не полный перечень использования нанотехнологий в мире XXI в.

Что-то из вышеперечисленного уже становится реальностью «на глазах», поскольку скорость технического прогресса в современном мире огромна; что-то еще находится в стадии доработки. Важно, что уже сейчас все это работает и приносит огромную пользу.

А потенциальные возможности нанотехнологий поистине не знают границ. Xотелось бы особо подчеркнуть, что мы пока не можем, конечно, оценить и представить себе масштабы развития и возможности применения нанотехнологий в целом, но количество научных исследований и затраты на них будут расти с каждым годом, учитывая перспективность тематики. Исследования в данном направлении все время расширяются. В 2004 г. человечество истратило на нанотехнологии $ 8,6 млрд. Причем больше половины – $ 4,6 млрд – это расходы правительственных организаций разных стран.

В связи с этим необходимо отметить государственное участие в проектах по нанотехнологиям. Япония и США начиная с 90-х гг. XX в. тратят на государственную поддержку нанопроектов миллиарды долларов; существует Объединенный комитет Евросоюза по нанотехнологиям, который также с этого времени активно финансирует развитие нанотехнологий как одно из самых приоритетных направлений. Не остается в стороне и Россия, которая вступила в борьбу за мировое лидерство в области развития нанотехнологий. Некоторое запоздание России в области развития нанотехнологий имеет исторические причины. То, что отставание в этой области может повлечь неконкурентоспособность России в различных областях техники и промышленности, в которых растет удельный вес нанотехнологий, и, как следствие, отставание в экономическом развитии в целом, понимают в России на высшем государственном уровне.

Ниже приводится выдержка из выступления президента Российской Федерации В. В. Путина перед Федеральным собранием 26 апреля 2007 г.:

Переднами стоит задача формирования научно-технологического потенциала, адекватного современным вызовам мирового технологического развития. И в этой связи хочу особо подчеркнуть необходимость создания эффективной системы исследований и разработок в области нанотехнологий, основанных на атомном и молекулярном конструировании.

Сегодня для большинства людей «нанотехнологии» – это такая же абстракция, как и ядерные технологии в 30-е гг. прошлого века. Однако нанотехнологии уже становятся ключевым направлением развития современной промышленности и науки. На их основе, в долгосрочной перспективе, мы в состоянии обеспечить повышение качества жизни наших людей, национальную безопасность и поддержание высоких темпов экономического роста. Оценки ученых говорят о том, что изделия с применением нанотехнологий войдут в жизнь каждого – без преувеличения – человека, позволят сэкономить невозобновляемые природные ресурсы.

Учитывая масштабность и уникальность российского проекта по нанотехнологиям, президент призвал страны СНГ принять участие в этом объединяющем взаимовыгодном и направленном в будущее деле. Придание проекту статуса международного повысит интерес к этому проекту и будет способствовать распространению достоверной и позитивной информации об этом очень непростом для понимания, но чрезвычайно перспективном направлении развития не только отечественной науки, но и человечества в целом.

Особые задачи стоят перед педагогами российских школ и высших учебных заведений. Настала необходимость для разработки новых программ по курсу концепций современного естествознания, включающих нанонауку и нанотехнологии как неотъемлемое междисциплинарное направление современного естествознания; в этих программах особенное внимание следует уделить углубленному изучению проблем микромира, с тем чтобы достижения нанотехнологий были понятны специалистам гуманитарного профиля.

В заключение этой главы приведем «наноцитату».

«Следующая промышленная революция» – данная фраза была отпечатана на поверхности, площадь которой меньше площади сечения человеческого волоса, буквами шириной 50 нанометров.

Вопросы для самопроверки

1. Что означает приставка «нано» к терминам: технологии, мембраны, транзисторы, сенсоры, зеркала и т. д.?

2. Только ли с изменением линейных размеров связан переходот микротехнологий к нанотехнологиям? Какие качественные изменения он предполагает? Обоснуйте ответ.

3. Приведите примеры использования нанотехнологий в современной жизни.

4. Является ли развитие нанотехнологий делом ученых-одиночек или небольших отраслевых лабораторий? Расскажите о масштабе программы «Развитие нанотехнологий».

 

 







Date: 2015-09-18; view: 506; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.013 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию