Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Момент силы
Это векторная величина, определяется по формуле
Направление вектора момента силы определяется следующим образом. Представляем в какую сторону сила пытается повернуть (тащить) тело относительно точки О, если тело с точкой О закреплены осью. Если по часовой стрелки, то вектор имеет знак "+", если против часовой, тогда знак "-". Момент силы реакции опоры отрицательный, так как сила реакции опоры "поворачивает" тело против часовой стрелки
Момент силы тяжести положительный, так как сила тяжести "поворачивает" тело по часовой стрелки Если точка О выбрана на теле
Момент силы реакции опоры и силы трения положительные, так как силы "поворачивают" тело по часовой стрелки
10 теорема Штейнера (названа по имени швейцарского математика Якоба Штейнера и голландского математика, физика и астронома Христиана Гюйгенса): момент инерции тела относительно произвольной оси равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями: где — известный момент инерции относительно оси, проходящей через центр масс тела, — искомый момент инерции относительно параллельной оси, — масса тела, — расстояние между указанными осями.
ВЫВОД Момент инерции, по определению: Радиус-вектор можно расписать как сумму двух векторов: , где — радиус-вектор расстояния между старой и новой осью вращения. Тогда выражение для момента инерции примет вид: Вынося за сумму , получим: Поскольку старая ось проходит через центр масс, то суммарный импульс тела будет равен нулю: Тогда: Откуда и следует искомая формула: , где — известный момент инерции относительно оси, проходящей через центр масс тела. ПРИМЕР Момент инерции стержня относительно оси, проходящей через его центр и перпендикулярной стержню, (назовём её осью ) равен Тогда согласно теореме Штейнера его момент относительно произвольной параллельной оси будет равен где — расстояние между искомой осью и осью . В частности, момент инерции стержня относительно оси, проходящей через его конец и перпендикулярной стержню, можно найти положив в последней формуле : Date: 2015-09-03; view: 455; Нарушение авторских прав |