Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Мейоз и митоз
Митоз – это деление клетки. Как известно, почти все клетки нашего организма время от времени делятся, но это не банальное деление пополам, а сложный многофазный процесс. Однако прежде чем говорить о митозе (и о другом варианте клеточного деления – мейозе), необходимо познакомиться со строением клетки. Все живое на планете Земля состоит из клеток[4]– миниатюрных лужиц протоплазмы, не видимых простым глазом. Первым в этот удивительный мир заглянул любознательный голландец Антони ван Левенгук (1632–1723), трудолюбивый натуралист‑самоучка. Он был владельцем небольшой мануфактурной лавки, а в свободное время исполнял обязанности привратника городской ратуши Дельфта – маленького голландского городка. В середине XVII века Дельфт славился отменными мастерами‑оптиками, но Левенгук был лучшим. Его короткофокусные линзы диаметром меньше 1/8 дюйма (один дюйм равняется 2,54 см) давали увеличение в 150–300 раз и были по тем временам непревзойденным шедевром инженерного мастерства. Замечательные стекла Левенгука оставались вне конкуренции не только на протяжении всей жизни мастера, но и спустя много лет после его смерти.
Вопреки распространенному мнению, изобретателем микроскопа был вовсе не Левенгук, а его земляки Ганс и Захарий Янсены, собравшие первый работоспособный прибор из увеличительных стекол еще в 1590 году. Известно также, что с оптическими линзами экспериментировал и монах‑францисканец Роджер Бэкон (1212–1292), английский философ и естествоиспытатель, предвосхитивший многие позднейшие открытия.
Наведя свой прибор на дождевую каплю, Левенгук первым обнаружил «ничтожных зверюшек», самозабвенно резвящихся в прозрачной воде. Его занимало решительно все – кровь, слюна, зубной налет, семена растений и чешуйки собственной кожи. Левенгук был первым ученым, кто увидел и зарисовал простейших, бактерии, сперматозоиды в семенной жидкости, а также красные кровяные тельца – эритроциты и их движение в капиллярах. Правда, он считал, что его «маленькие животные» устроены в точности так же, как и крупные организмы, то есть имеют ножки, хвостики, органы пищеварения, кровеносную систему и т. д. Вклад голландца в естественные науки трудно переоценить, однако сам термин «клетка» принадлежит не ему, а его современнику – английскому ученому Роберту Гуку (1635–1703). В 1665 году Гук опубликовал труд под названием «Микрография, или физиологическое описание мельчайших тел, исследованных с помощью увеличительных стекол», установил клеточное строение тканей и впервые описал растительные клетки, хотя микроскоп его конструкции давал всего лишь тридцатикратное увеличение. Роберт Гук Матиас Шлейден Теодор Шванн
К середине XIX века трудами немецкого ботаника Матиаса Шлейдена (1804–1881) и зоолога Теодора Шванна (1810–1882) была в общих чертах сформулирована клеточная теория строения всего живого. Шлейден установил, что любая растительная клетка имеет в своем составе ядро, и продемонстрировал его роль в росте и делении клетки, а Шванн в работе «Микроскопическое исследование о соответствии в строении и росте животных и растений» определил клетку как универсальную структурную единицу животного и растительного мира. А чешский естествоиспытатель Ян Эвангелист Пуркине (1787–1869) ввел в научный обиход широко известный термин «протоплазма». Ян Эвангелист Пуркине
Во времена Менделя о тонком строении клетки было известно очень мало. Знали только, что она представляет собой пузырек вязкой жидкости (ее Пуркине и назвал протоплазмой[5]), окруженный оболочкой и заключающий в себе ядро. Несовершенная микроскопическая техника середины XIX века не позволяла разглядеть более тонкие структуры. Разумеется, сегодня мы знаем о строении клетки гораздо больше, поскольку в распоряжении ученых имеются современные приборы.
Поскольку длина волны видимого света колеблется от 400 до 740 нанометров (нанометр – миллиардная доля метра), то максимальное разрешение, которое способен дать оптический микроскоп, составляет 400 нм, или 0,4 микрона (микрон – миллионная доля метра). А вот разрешающая способность электронного микроскопа гораздо больше, потому что вместо светового луча там используется пучок электронов, длина волны которого составляет 0,01 ангстрема (ангстрем равен 0,1 нанометра), т. е. в 500 тысяч раз меньше, чем у видимого света. Поэтому с его помощью можно разглядеть даже небольшие белковые молекулы. В последние годы появились еще более совершенные приборы (например, сканирующие микроскопы различных модификаций), дающие возможность спуститься в микромир этажом ниже и увидеть «упаковку» отдельных атомов в молекулах. Так, изобретенный в середине 1980‑х годов туннельный сканирующий микроскоп не только дает объемное трехмерное изображение объекта, но и позволяет оперировать с отдельными атомами. А на основе сканирующей туннельной микроскопии был разработан универсальный атомно‑силовой микроскоп, с помощью которого можно анализировать на атомном уровне структуру различных твердых материалов – стекла, керамики, металлов, полупроводников и т. д. Для исследования биологических объектов этот метод совершенно незаменим и находит широкое применение в наши дни.
Все клетки подразделяются на ядерные, то есть имеющие оформленное ядро (эукариоты – от греч. karyon – «орех», «ядро ореха»), и не имеющие ядра (прокариоты). Организмы животных, растений и грибов построены из ядерных клеток. Все простейшие (вспомните инфузорию туфельку и амебу из школьного курса зоологии) тоже эукариоты, а к числу прокариот относятся бактерии и сине‑зеленые водоросли. Если посмотреть на живую клетку в мощный электронный микроскоп, мы увидим, что это не просто комочек слизи с ядром в центре, а сложный организм с богатой внутренней структурой. От внешней среды клетку отделяет цитоплазматическая мембрана (ЦПМ), или плазмолемма, через которую осуществляется транспорт ионов кальция, натрия и калия, а также воды и небольших молекул. Кроме ЦПМ – внешней оболочки клетки – существует система мембран внутренних (эндомембран), которые делят внутриклеточное пространство на замкнутые объемы разной величины и формы. Строение ядерной клетки (эукариоты)
Система внутренних мембран формирует сеть трубчатых цистерн и пузыревидных расширений до 100 нм в диаметре (так называемый эндоплазматический ретикулюм), аппарат Гольджи, лизосомы, вакуоли и множество других внутриклеточных образований – органелл. На лизосомы – крохотные пузырьки около двух микрон в диаметре – возложена функция внутриклеточного пищеварения, аппарат Гольджи управляет ростом ЦПМ и принимает участие в обмене белков и углеводов, а вакуоли служат целям осмотической регуляции[6], сначала всасывая, а затем выводя наружу воду, проникшую в клетку из внешней среды. В полостях эндоплазматической сети располагаются небольшие тельца – рибосомы, на которых идет синтез белка. Все органеллы плавают в жидкой внутриклеточной среде – цитоплазме, которая представляет собой гомогенный водный раствор неорганических и органических веществ (в частности, белков и ферментов) с вязко‑упругими свойствами. Подобная консистенция достигается за счет микрофиламентов – тонких и длинных нитевидных белковых структур. Цитоплазма не покоится, но течет со скоростью от одного до шести сантиметров в час, и органеллы перемещаются вместе с ней. Кроме того, микрофиламенты отвечают за перемещение клеточных ядер и некоторых других органелл и принимают участие в образовании перетяжки в ходе клеточного деления. Особый интерес представляют митохондрии – энергетические станции клетки (в растительных клетках их аналогом являются хлоропласты). Эти органеллы обладают развитой системой собственных эндомембран, которые являются продолжением их двуслойной оболочки и образуют внутренние выпячивания – кристы. В клетке имеется от ста пятидесяти до полутора тысяч митохондрий, а у крупных простейших их количество достигает полумиллиона. Окисляя органические вещества, митохондрии накапливают энергию в форме аденозинтрифосфата (АТФ), которой и снабжают клетку. Хлоропласты растительных клеток осуществляют процессы фотосинтеза, то есть преобразуют энергию солнечного света в энергию химических связей сложной органики, прежде всего углеводов. Из простых веществ, вроде углекислого газа и воды, они синтезируют сложные органические соединения. Как митохондрии, так и пластиды располагают собственным генетическим аппаратом – кольцевой молекулой ДНК и могут размножаться самостоятельно, вне зависимости от деления клетки.
Но почему все‑таки митохондрии и хлоропласты так непохожи на большинство органелл и выглядят явными «чужаками»? На этот вопрос отвечает теория эндосимбиоза, согласно которой митохондрии и хлоропласты являются потомками древних прокариот вроде современных бактерий и одноклеточных сине‑зеленых водорослей (цианобактерий). В незапамятные времена они проникли в более крупные клетки и поселились там на правах симбионтов. И действительно, митохондрии животных клеток и хлоропласты растительных, занятые добыванием и преобразованием энергии для внутриклеточных биохимических и генетических процессов, чрезвычайно похожи на самостоятельные одноклеточные организмы. Они отграничены от цитоплазмы хозяйской клетки полноценной двойной мембраной, имеют свой собственный генетический аппарат и размножаются относительно независимо от деления всей клетки и ее ядра. Этим сходство митохондрий с бактериями не ограничивается: например, все их белки начинаются с одной и той же экзотической аминокислоты – N‑формилметионина. Он весьма распространен у бактерий, но не встречается в белках, кодируемых ядерными генами эукариотической клетки. И хотя существуют альтернативные гипотезы происхождения органелл эукариотических клеток, подавляющее большинство ученых разделяют теорию эндосимбиоза. Например, у современного исследователя В. Г. Дебабова сомнений нет никаких: «Предшественниками митохондрий были протеобактерии, а предшественниками хлоропластов – цианобактерии». Недавно этот сугубо академический вопрос об эволюционном происхождении митохондрий нашел подтверждение в практической медицине. Речь идет о сепсисе, который в обиходе называют заражением крови. Обычно он возникает как осложнение местного нагноительного процесса, когда микроорганизмы из первичного очага проникают в кровяное русло и начинают бурно размножаться. Однако бывает так, что несмотря на типичную клиническую картину острого сепсиса, микробы в крови больных отсутствуют. Это парадоксальное состояние (сепсис без сепсиса) встречается при тяжелых внутренних травмах (но без открытых ран или повреждений кишечника) и получило название «синдром системного воспалительного ответа». Излишне говорить, что ударные дозы антибиотиков в этом случае бесполезны: бактерий в крови нет, и антибиотикам просто не на что действовать. Долгое время «сепсис без сепсиса» оставался загадкой, и вот совсем недавно ответ удалось найти. При тяжелых травмах внутренних тканей из разрушенных клеток в кровь поступает огромное количество митохондрий и их обломков, которые и запускают воспалительную реакцию. Из‑за сходства с бактериями иммунная система считает их опасными микробами, поднимает тревогу и запускает каскад реакций, как при реальной инфекции. А в обычных условиях нам ничего не грозит, поскольку митохондрии плавают внутри клеток, так что их гены и белки остаются для иммунной системы невидимыми.
Приблизительно в центре клетки находится довольно крупное округлое образование – клеточное ядро, окруженное собственной двойной мембраной и заполненное вязкой жидкостью – кариоплазмой. Внутри ядра лежит тельце поменьше – ядрышко. А вот хромосомы – своего рода командный пункт – без помощи электронного микроскопа не разглядеть: они становятся видимыми, когда клетка начинает подготовку к делению. Но вот клетка приступила к митозу. Внутри ядра образовался рыхлый клубок длинных перепутанных нитей – произошла спирализация хромосом. Теперь они хорошо заметны в обычный световой микроскоп. Нити медленно и хаотично движутся, постепенно становясь все короче и толще. Рассосалась ядерная мембрана, исчезло ядрышко. Хромосомы, ставшие совсем короткими и плотными, выходят в цитоплазму и располагаются в экваториальной плоскости клетки, выстроившись в цепочку. Затем они расщепляются вдоль – их количество удвоилось. Теперь сестринские хромосомы лежат параллельно друг другу. Митоз
На полюсах клетки тоже произошли изменения: от периферии к центру медленно ползут тонкие нити. Это заработала центриоль – полый цилиндр, продуцирующий веретено деления, те самые тонкие нити, что ползут к экватору. Центриоль – небольшая внутриклеточная структура, от 350 до 500 нм длиной и около 150 нм в диаметре. Незадолго до удвоения хромосомного материала она делится пополам, и эти половинки оперативно разъезжаются к противоположным полюсам делящейся клетки. Веретено деления представляет собой протяженный конгломерат из пучка тубулярных образований (микротрубочек), которые упакованы в плотный тяж из нескольких десятков полых элементарных волокон (вплоть до сотни и даже более). Один конец веретена деления зафиксирован на центриоли, а другим цепляется за хромосомную перетяжку – кинетохор, или центромеру, после чего нити веретена начинают сокращаться и растаскивают хромосомы к полюсам клетки. Когда хромосомы собираются у полюсов, образуется перетяжка, рассекающая материнскую клетку надвое. На ее месте возникают две дочерние клетки, и каждая из них получает полный набор генетического материала, поскольку он был предварительно удвоен[7]. Это и есть митоз – стандартное бесполое размножение эукариотических клеток, протекающее в несколько стадий (профаза, прометафаза, метафаза, анафаза и телофаза). Стадия, когда клетка пребывает в покое, называется интерфазой. Однако помимо митоза существует, как мы помним, и другой вариант клеточного деления – мейоз (от греч. méiosis – «уменьшение»). Таким путем образуются половые клетки – гаметы. Но что и почему уменьшается в ходе мейоза? Сначала повнимательнее присмотримся к хромосомам. Пусть это будет хотя бы горох, на котором Мендель открыл законы наследственности. Во всех клетках, даже если они взяты из разных частей растения, мы обнаружим 14 хромосом. Они располагаются попарно, значит, в случае гороха мы имеем семь пар – семь разновидностей хромосом. Хромосомы разных пар отличаются друг от друга некоторыми деталями строения – расположением перетяжек, длиной, толщиной и др. Но внутри каждой пары хромосомы похожи как две капли воды, поэтому их называют гомологичными (подобными). Хромосомные наборы других видов будут выглядеть иначе. Например, в клетках человека мы найдем 46 хромосом (23 пары), в клетках кукурузы – 10 (5 пар), а в клетках плодовой мушки дрозофилы – 8 (4 пары). Короче говоря, каждый вид характеризуется вполне определенным числом хромосом, но это число всегда будет четным, так что хромосомы легко разбить попарно. Единственное исключение составляют половые клетки, которые в отличие от соматических (клеток тела) несут не двойной (диплоидный), а одинарный (гаплоидный) набор хромосом. Мейоз
А теперь вернемся к мейозу. Каким образом из соматических клеток с двойным набором генетического материала получаются урезанные гаметы? На первых порах мейоз как будто бы ничем не отличается от митоза: хромосомы исправно проходят фазу спирализации и становятся толстыми и короткими. А потом все идет наперекосяк: вместо того чтобы расположиться в экваториальной плоскости, они объединяются попарно и устраивают некое подобие старинного танца, когда партнеры то кружатся, взявшись за руки, то разбегаются по сторонам. Хромосомы сначала сближаются и приникают друг к другу, а затем расходятся в стороны. Но при этом они успевают обменяться кусочками своих тел – у новой хромосомы «голова» и «хвост» оказываются от разных хромосом. А затем следуют подряд два клеточных деления, но хромосомы удваиваются только единожды, и на выходе образуются половые клетки с гаплоидным (одинарным) набором хромосом. Итак, мейоз представляет собой одну из форм непрямого клеточного деления, при котором происходит редукция (уменьшение) числа хромосом. В отличие от митоза, мейоз осуществляется в два этапа. Во время первого мейотического деления (его принято называть редукционным) генетический материал предварительно не удваивается (как при митозе), поэтому дочерние клетки получают лишь по одному партнеру из каждой хромосомной пары. Второе деление представляет собой обычный митоз и никак не влияет на число хромосом. В результате двух последовательных мейотических делений образуются четыре зародышевые (половые) клетки, каждая из которых содержит гаплоидный набор хромосом. Восстановление диплоидного состояния происходит во время оплодотворения, когда половые клетки сливаются. У животных путевку в жизнь зародышу дает слияние сперматозоида с яйцеклеткой, а семена растений возникают от слияния женской зародышевой клетки (семяпочки) с мужской зародышевой клеткой (пыльцевым зернышком). Не правда ли, вся эта хромосомная свистопляска как две капли воды похожа на поведение выдуманных Менделем «факторов», которые сегодня называют генами? И действительно: и те и другие содержатся в клетке в двойном наборе, и как в зародыш попадает по одному гену от каждого из родителей, точно так же и зигота (зародышевая клетка после оплодотворения) получает по одной хромосоме каждого «сорта» с материнской и отцовской стороны. Сходство так велико, что едва ли это случайное совпадение. Следует отдать должное прозорливости великого чеха, который, ничего не зная ни о хромосомах, ни о мейозе, столь блистательно разобрался в сути вопроса и вывел законы наследственности, заложив тем самым основы современной генетики. В начале XX столетия, когда законы Менделя были открыты заново, биологи уже не сомневались, что гены имеют самое прямое отношение к хромосомам. Но хромосома, как известно, построена из белка особого типа и нуклеиновой кислоты. Где же конкретно прячется наследственный фактор и что он собой представляет? Одним словом, что такое ген? Об этом речь пойдет в следующей главе.
Date: 2015-09-02; view: 668; Нарушение авторских прав |