Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Доминантность и рецессивность





домина́нтность,проявление у гибридов первого поколения только одного из пары альтернативных признаков. Первое научное описание явления доминантности дал Г. Мендель на основании своих опытов по скрещиванию различных сортов гороха. Скрещивая два сорта, устойчиво различавшихся, напр., по цвету (жёлтые и зелёные) и форме (гладкие и морщинистые) горошин, Мендель обнаружил, что у гибридов первого поколения горошины всегда жёлтые и гладкие. Такие проявляющиеся признаки он назвал доминантными, а не проявляющиеся, подавляемые признаки (зелёный цвет, морщинистая форма) – рецессивными. Правило доминирования, или единообразия гибридов первого поколения, вошло в генетику как первый закон Менделя. Доминантными и рецессивными называются и аллели (аллельные гены), ответственные за соответствующие признаки. В биологической литературе доминантные признаки и аллели для краткости обозначаются латинскими прописными буквами А, В, С и т.д. РЕЦЕССИВНОСТЬ, отсутствие (непроявление) у гетерозиготного организма одного из пары противоположных (альтернативных) признаков. Такой признак называется рецессивным признаком, а контролирующий его аллель (ген) – рецессивным аллелем (геном). Понятие «рецессивность» имеет смысл только как парное и противоположное понятию «доминантность». Так, в опытах, на основании которых были сформулированы эти понятия, Г. Мендель скрещивал два сорта гороха, устойчиво воспроизводивших окраску семян – один сорт жёлтую, другой – зелёную. У гибридов первого поколения все семена оказывались жёлтыми, т. е. обладали доминантным признаком, подавлявшим развитие зелёной окраски, т. е. рецессивный признак. При скрещивании между собой гибридов первого поколения у части гибридов второго поколения вновь обнаруживались зелёные семена. Таким образом, рецессивный признак (его аллель) не «растворялся» у гибридов первого поколения, а сохранялся в скрытом состоянии и передавался следующему поколению, у которого и проявлялся в случае гомозиготности по рецессивным аллелям. Рецессивные аллели и признаки принято обозначать строчными буквами – а, в и т. д.

26. Типы доминирования:

Доминирование проявляется в тех случаях, когда одна аллель гена полностью скрывает присутствие другой аллели. Однако, по-видимому, чаще всего присутствие рецессивной аллели как-то сказывается и обычно приходится встречаться с различной степенью неполного доминирования. Очевидно, это объясняется тем, что доминантная аллель отвечает за активную форму белка-фермента, а рецессивные аллели часто детерминируют те же белки-ферменты, но со сниженной ферментативной активностью. Это явление и реализуется у гетерозиготных форм в виде неполного доминирования.Сверхдоминирование заключается в том, что у доминантного аллеля в гетерозиготном состоянии иногда отмечается более сильное проявление, чем в гомозиготном состоянии.Кодоминирование - проявление в гетерозиготном состоянии признаков, детерминируемых обеими аллелями. Например, каждый из аллельных генов кодирует определенный белок, и у гетерозиготного организма синтезируются они оба. В таких случаях путем биохимического исследования можно установить гетерозиготность без проведения анализирующего скрещивания. Этот метод нашел распространение в медико-генетических консультациях для выявления гетерозиготных носителей генов, обусловливающих болезни обмена. По типу кодоминирования у человека наследуются группы крови.

27. Единообразие гибридов первого поколения:

Данный закон утверждает, что скрещивание особей, различающихся по данному признаку (гомозиготных по разным аллелям), дает генетически однородное потомство (поколение F 1), все особи которого гетерозиготны. Все гибриды F 1 могут иметь при этом либо фенотип одного из родителей (полное доминирование), как в опытах Менделя, либо, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения F 1, могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и aа) все их потомки одинаковы по генотипу (гетерозиготны – Аа), а значит, и по фенотипу.

28. Понятие генотип и фенотип:

Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид. Вместе с факторами внешней среды определяет фенотип организма. Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.


Феноти́п (от греческого слова phainotip — являю, обнаруживаю) — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешне средовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены. Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).

29. правило расщепления гибридов первого поколения:

Закон единообразия гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку. При этом все гибриды могут иметь фенотип одного из родителей (полное доминирование), как это имело место в опытах Менделя, или, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения могут проявить признаки обоих родителей (кодоминировапие). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготны — Аа), а значит, и по фенотипу.

30. Анализирующее скрещивание: — скрещивание, проводящееся для определения генотипа организма. Для этого подопытный организм скрещивают с организмом, являющимся рецессивной гомозиготой по изучаемому признаку. Рассмотрим это на конкрет­ном примере. Допустим, надо выяснить генотип растения гороха, имеющего желтые семена. Возможны два варианта генотипа по­допытного растения: он может являться либо гетерозиготой (Аа), либо доминантной гомозиготой (АА). Для установления его генотипа проведем анализирующее скрещивание с рецессивнойгомозиготой (аа) - растением с зелеными семенами. Таким образом, если в результате анализирующего скрещивания в F1, наблю­дается расщепление в соотношении 1:1, то подопытный организм был гетерози­готен; если расщепления не наблюдает­ся и все организмы в F1 проявляют до­минантные признаки, то подопытный организм был гомозиготен. Рассмотрим также один из возможных случаев анализирующего дигибридного скрещивания — когда подопытный ор­ганизм оказывается гетерозиготен по двум признакам, т. е. является дигетерозиготой.

31. Закономерности наследования при дигибридном скрещивание:

Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков (по двум парам аллелей), называется дигибридным. Гибриды, гетерозиготные по двум генам, называют дигетерозиготными, а в случае отличия их по трем и многим генам —три- и полигетерозиготными соответственно.Результаты дигибридного и полигибридного скрещивания зависят от того, располагаются гены, определяющие рассмотренные признаки, в одной хромосоме или в разных.Независимое наследование (третий закон Менделя). Для дигибридного скрещивания Мендель использовал гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Одно из скрещиваемых растений имело желтые гладкие семена, другое — зеленые морщинистые Дигибридное скрещивание растений гороха, различающихся по форме и окраске семян.Все гибриды первого поколения этого скрещивания имели желтые гладкие семена. Следовательно, доминирующими оказались желтая окраска семян над зеленой и гладкая форма над морщинистой. Обозначим аллели желтой окраски А, зеленой — а, гладкой формы— В, морщинистой— b. Гены, определяющие развитие разных пар признаков, называются неаллельпыми и обозначаются разными буквами латинского алфавита. Родительские растения в этом случае имеют генотипы АА ВВ и aabb, а генотип гибридов F1 —АаВb,т. е. является дигетерозиготным. Во втором поколении после самоопыления гибридов F1 в соответствии с законом расщепления вновь появились морщинистые и зеленые семена. При этом наблюдались следующие сочетания признаков: 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых семян. Это соотношение очень близко к соотношению 9:3:3:1.Отсюда следует, что дигибридное расщепление представляет собой два независимо идущих моногибридных расщепления, которые как бы накладываются друг на друга.Проведенные наблюдения свидетельствуют о том, что отдельные пары признаков ведут себя в наследовании независимо. В этом сущность третьего закона Менделя — закона независимого наследования признаков, или независимого комбинирования генов.


 

32. Закон независимого комбинирования: - утверждает, что при скрещивании гомозиготных особей, отличающихся по двум и более парам альтернативных признаков, каждая из таких пар (и пар аллельных генов) ведёт себя независимо от других пар, т. е. и гены, и соответствующие им признаки наследуются в потомстве независимо и свободно комбинируются во всех возможных сочетаниях. Он основан на законе расщепления и выполняется в том случае, если пары аллельных генов расположены в разных гомологичных хромосомах. Часто как один из законов Менделя приводится и закон чистоты гамет, утверждающий, что в каждую половую клетку попадает только один аллельный ген. Обозначим ген желтой окраски семян - А, зеленой окраски — а. А и а представляют собой аллели (альтернативные проявления одного и того же гена) гена А. Обозначим ген гладкой формы семян - В, морщинистой - b.

Р ААВВ х ааbb

желтые гладкие х зеленые морщинистые

гаметы АВ ab

F1 АаВb желтые гладкие

гаметы F1 АВ АbаВаb

АВ ААВВ АВ ААВb АВ АаВВ АВ АаВb АВ

АbААВb АВ Ааbb АЬ АаВb АВ Ааbb АЬ


аВАаВВ АВ АаВb АВ ааВВаВааВbаВ

аbАаВb АВ АаbbАbааВbаВааbbab

9:3:3:1

33. Цитологические основы дигибридногосрещивания:

Как известно, в профазе I мейоза гомологичные хромосомы конъюгируют, а в анафазе одна из гомологичных хромосом отходит к одному полюсу клетки, а другая – к другому. При расхождении к разным полюсам негомологичные хромосомы комбинируются свободно и независимо друг от друга. При оплодотворении в зиготе восстанавливается диплоидный набор хромосом и гомологичные хромосомы, оказавшиеся в процессе мейоза в разных половых клетках родителей, соединяются вновь. Предположим, что каждая хромосома содержит только один ген. Палочковидные хромосомы несут аллель A или а, сферические – В или b, т.е. эти две пары аллелей находятся в негомологичных хромосомах.

Гомозиготные родители (ААВВ и aabb) формируют только один тип гамет с доминантными (АВ) или с рецессивными (ab) аллелями. При слиянии таких гамет образуется единообразное первое поколение гибридов – гибрид дигетерозиготен (АаВb), но так как у него присутствуют гены А и B, то по фенотипу он сходен с одним из родителей.

В тех случаях, когда необходимо указать, что те или иные гены находятся в гомологичных хромосомах, в генетических формулах зигот хромосомы принято изображать в виде двух черточек или одной с указанием обоих аллелей гена. Формула дигетерозиготы может быть записана так:. Поскольку гаметы содержат только по одной из гомологичных хромосом и соответственно по одному аллелю каждого гена, то их формулы могут быть записаны так: и т.д.В дальнейшем у гибридных организмов по причине случайности расхождения отцовских и материнских хромосом каждой пары в процессе мейоза ген А может попасть в одну гамету с геном В или с геном b. Точно так же ген а может оказаться в одной гамете с геном В или с геном b. Поэтому гибриды образуют четыре типа гамет: Образование всех четырех типов гамет равновероятно, т.е. все они образуются в равных количествах. Свободное сочетание таких гамет в процессах оплодотворения заканчивается образованием 16 типов зигот, а значит, и потомков (см. рис. выше). Они распадаются на четыре фенотипических класса: доминантные по обоим признакам – 9 частей, доминантные по первому и рецессивные по второму признаку – 3 части, рецессивные по первому и доминантные по второму – 3 части, рецессивные по обоим признакам – 1 часть. Генотипических классов 9: 1AABB, 2ААВb, 1AAbb, 1Aabb, 4AaBb, 2AaBB, 1aaBB, 2aaBb, 1aabb.

34. Условия осуществления менделевских законов: скрещивания проводятся на диплоидном уровне;

разные гены должны находиться в негомологичных хромосомах (отсутствие сцепления);

изучаемые организмы не должны иметь нарушений процесса мейоза, а как результат, равновероятное образование гамет всех возможных типов;

одновременное созревание мужских и женских половых клеток всех типов, обеспечивающее равновероятное их соединение при оплодотворении;

отсутствие селективности при оплодотворении гаметами всех типов;

равновероятная выживаемость мужских и женских гамет всех типов;

отсутствие селективности в выживаемости зигот всех возможных генотипов;

равновероятная выживаемость взрослых организмов;

эксперименты должны проводиться в условиях, не препятствующих нормальному развитию изучаемых признаков;

должно быть обеспечено получение сравнительно большого числа особей в эксперименте.

35. Множественный аллелизм. — один из видов взаимодействия аллельных генов, при котором ген может быть представлен не двумя аллелями (как в случаях полного или неполного доминиро­вания), а гораздо большим их числом; при этом члены одной серии аллелей могут находиться в различных доминантно-ре­цессивных отношениях друг с другом. Рассмотрим это на про­стейшем примере — трехчленной серии аллелей, определяющей окраску шерсти у кроликов. Окраска может быть сплошной тем­ной, белой (альбинизм — полное отсутствие пигментации шерсти) или горностаевой (на фоне общей белой окраски черные кончики ушей, лап, хвоста и мордочки). Ген сплошной окраски доминирует над остальными членами серии; ген горностаевой окраски доминантен по отношению к белой, но рецессивен по отношению к сплошной, а ген белой окраски рецессивен по от­ношению и к сплошной, и к горностаевой. У мухи дрозофилы имеется серия аллелей гена окраски глаз, состоящая из 12 чле­нов: вишневая, красная, коралловая и т. д. до белой, определяе­мой рецессивным геном. У человека также известны множественные аллели для многих признаков, например для ферментов, антигенов и др. Следует иметь в виду, что в генотипе диплоидных организмов могут находиться лишь два гена из серии аллелей. Остальные аллели данного гена в разных сочетаниях будут по­парно входить в генотипы других особей данного вида. Таким образом, множественный аллелизм характеризует разнообразие генофонда целого вида, т. е. является видовым, а не индивиду­альным признаком (в отличие от полимерии).







Date: 2015-09-02; view: 3473; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.011 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию