Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Сцепленное наследование.Кроссинговер





Сцепленное наследование — феномен скоррелированного наследования определенных состояний генов, расположенных в одной хромосоме.

Полной корреляция не бывает из-за мейотического кроссинговера, так как сцепленные гены могут разойтись по разным гаметам. Кроссинговер наблюдается в виде расцепления у потомства тех аллелей генов и, соответственно, состояний признаков, которые были сцеплены у родителей.

Наблюдения, проведенные Томасом Морганом, показали, что вероятность кроссинговера между различными парами генов разная, и появилась идея создать генные карты на основании частот кроссинговера между разными генами. Первая генная карта была построена студентом Моргана, Альфредом Стёртевантом (англ.) в 1913 году на материале Drosophila melanogaster.

Расстояние между генами, расположенными в одной хромосоме, определяется по проценту кроссинговера между ними и прямо пропорционально ему. За единицу расстояния принят 1% кроссинговера (1 морганида или 1 сантиморганида). Чем дальше гены находятся друг от друга в хромосоме,

руга в хромосоме, тем чаще между ними будет происходить кроссинговер. Максимальное расстояние между генами, расположенными в одной хромосоме, может быть равно 49 сантиморганидам.

Кроссинговер - (от англ. crossingover), перекрест, взаимный обмен участками парных хромосом, происходящий в результате разрыва и соединения в новом порядке их нитей — хроматид (рис.); приводит к перераспределению (рекомбинации) сцепленных генов. Т. о., К. — важнейший механизм, обеспечивающий комбинаторную изменчивость, а следовательно, — один из главных факторов эволюции. К., как правило, имеет место в профазе первого деления половых клеток, когда их хромосомы представлены четырьмя нитями. В месте перекреста удаётся цитологически обнаружить характерную фигуру перекрещенных хромосом — хиазму. Результат К. можно выявить по новому сочетанию сцепленных генов (если аллели гомологичных хромосом, участвовавших в К., были гетерозиготны). Этот приём, открытый американским генетиком Т. Морганом, позволил доказать линейное размещение генов в хромосоме и разработать метод установления их взаиморасположения. В 1933 немецкий учёный К. Штерн цитологически доказал осуществление К. при обмене генами между хромосомами. Частота К. в грубом приближении зависит от линейного расстояния между генами. В случае, если на участке между двумя генами происходит сразу двойной или множественный обмен, частота перекомбинации этих генов уменьшается. Если разрывы в хромосомах, обменивающихся участками, произойдут не в строго идентичных точках, то наступит так называемый неравный К. При этом одна из хромосом получит дополнительный генетический материал, а в гомологичной хромосоме окажется его нехватка. У высших организмов обнаружен К. и в клетках тела (соматических), в этом случае он приводит к формированию мозаичных признаков. К. может захватывать обе нити молекулы ДНК или только одну; он может затронуть большой участок хромосомы с несколькими генами или часть одного гена (внутригенный К.). Разрывы и воссоединения хромосом при К. осуществляются при участии ряда ферментов. Однако молекулярный механизм К. окончательно не выяснен.

 

20. Карты хромосом: генетическая, цитологическая, физическая, химическая, секвенсовая. Картирование хромосом человека.

Генетические карты хромосом — это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления.

Впервые в 1913 — 1915 годах на возможность построения генетических карт хромосом указывают Т. Морган и его сотрудники. Они экспериментально показали, что основываясь на явлениях сцепления генов и кроссинговера можно построить генетические карты хромосом. Возможность картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.

Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. В исследованиях эволюционного процесса сравнивают генетических карты разных видов живых организмов. Помимо генетических, существуют и другие карты хромосом.

Рестрикционная карта – вид физической карты, на которой указан порядок следования и расстояния между сайтами расщепления ДНК рестриктазами (обычно участок узнавания рестриктазы 4-6 п.н.). Маркерами этой карты являются рестрикционные фрагменты/сайты рестрикции.

 

Цитологические карты хромосом, схематическое изображение хромосом с указанием мест фактического размещения отдельных генов, полученное с помощью цитологических методов. Ц. к. х. составляют для организмов, для которых обычно уже имеются генетические карты хромосом. Каждое место расположения гена (локус) на генетической карте организма, установленное на основе частоты перекреста участков хромосом (кроссинговера), на Ц. к. х. привязано к определённому, реально существующему участку хромосомы, что служит одним из основных доказательств хромосомной теории наследственности. Для построения Ц. к. х. используют данные анализа хромосомных перестроек (вставки, делеции и др.) и, сопоставляя изменения морфологических признаков хромосом при этих перестройках с изменениями генетических свойств организма, устанавливают место того или иного гена в хромосоме. Цитологическими методами легко определить отсутствие участка хромосомы или перенос его в др. место. Сопоставление Ц. к. х. с генетическими показало, что физическое расстояние между генами в хромосомах не соответствует генетическому (видимо, частота кроссинговера неодинакова в разных участках хромосом), поэтому плотность распределения генов на цитологических и генетических картах хромосом различна. Так было установлено важное генетическое явление — неравномерность частот перекреста по длине хромосомы. Линейное расположение генов и их последовательность, установленные генетическими методами, подтверждаются Ц. к. х.

Физическая карта – графическое представление порядка следования физических маркеров (фрагментов молекулы ДНК), расстояние между которыми определяется в парах нуклеотидов.

Рестрикционная карта – представление генома в виде упорядоченного набора рестрикционных фрагментов, получаемые ферментами – реструктазами (обычно используют несколько реструктаз).

Химическая карта – расположение по длине хромосомы А-Т и Г-Ц пар при нуклеотидных оснований, выявляемых методами химического анализа.

Секвенсовая карта – определение первичной структуры ДНК (расположение в нуклеотидной цепочке) методами секевнирования. Метод Сенгера (дезокси метод): основан на синтезе изучаемой цепи ДНК in vitro остановкой синтеза на заданном основании путем присоединения дидезоксинуклеотида.

Date: 2015-09-02; view: 1393; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию