Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Обратная матрица. Определение:Матрица называется обратной по отношению к квадратной матрице , если





Определение: Матрица называется обратной по отношению к квадратной матрице , если

.

Обратная матрица существует только для квадратной матрицы, определитель которой не равен нулю. Такая матрица называется невырожденной.

Рассмотрим общий подход к нахождению обратной матрицы.

Рассмотрим на примере, как найти обратную матрицу .

Пусть

1)Найти определитель матрицы

.

Так как , то обратная матрица существует.

2) Сформировать матрицу из алгебраических дополнений каждого элемента матрицы.

если - четное число,   если - нечетное число.

3) Транспонируем матрицу из алгебраических дополнений.

.

 

4) Обратная матрица определяется формулой

,

 

.

Укажем следующие свойства обратных матриц:

1. (A-1)-1 = A;

2. (AB)-1 = B-1A-1

3. (AT)-1 = (A-1)T.

 

 

Применение матриц к решению линейных уравнений.

Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальныхуравнений. В этом случае, количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных. В результате решение систем линейных уравнений сводится к операциям над матрицами.







Date: 2015-09-02; view: 312; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию