Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Поток выполнения





[править | править вики-текст]

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 мая 2015; проверки требует 1 правка.

 

Для термина «Поток» см. также другие значения.

Для термина «Нить» см. также другие значения.

 

Процесс с двумя потоками выполнения на одном процессоре

Пото́к выполне́ния (тред; от англ. thread — нить) — наименьшая единица обработки, исполнение которой может быть назначено ядром операционной системы. Реализация потоков выполнения и процессов в разных операционных системах отличается друг от друга, но в большинстве случаев поток выполнения находится внутри процесса. Несколько потоков выполнения могут существовать в рамках одного и того же процесса и совместно использовать ресурсы, такие как память, тогда как процессы не разделяют этих ресурсов. В частности, потоки выполнения разделяют инструкции процесса (его код) и его контекст (значения переменных, которые они имеют в любой момент времени). В качестве аналогии потоки выполнения процесса можно уподобить нескольким вместе работающим поварам. Все они готовят одно блюдо, читают одну и ту же кулинарную книгу с одним и тем же рецептом и следуют его указаниям, причём не обязательно все они читают на одной и той же странице.

На одном процессоре многопоточность обычно происходит путём временного мультиплексирования (как и в случаемногозадачности): процессор переключается между разными потоками выполнения. Это переключение контекстаобычно происходит достаточно часто, чтобы пользователь воспринимал выполнение потоков или задач как одновременное. В многопроцессорных и многоядерных системах потоки или задачи могут реально выполняться одновременно, при этом каждый процессор или ядро обрабатывает отдельный поток или задачу.

Многие современные операционные системы поддерживают как временные нарезки от планировщика процессов, так и многопроцессорные потоки выполнения. Ядро операционной системы позволяет программистам управлять потоками выполнения через интерфейс системных вызовов. Некоторые реализации ядра называют потоком ядра, другие же — лёгким процессом (англ. light-weight process, LWP), представляющим собой особый тип потока выполнения ядра, который совместно использует одни и те же состояния и данные.

Программы могут иметь пользовательское пространство потоков выполнения при создании потоков с помощью таймеров, сигналов или другими методами, позволяющими прервать выполнение и создать временную нарезку для конкретной ситуации (Ad hoc).

Отличие от процессов[править | править вики-текст]

Потоки выполнения отличаются от традиционных процессов многозадачной операционной системы тем, что:

· процессы, как правило, независимы, тогда как потоки выполнения существуют как составные элементы процессов

· процессы несут значительно больше информации о состоянии, тогда как несколько потоков выполнения внутри процесса совместно используют информацию о состоянии, а также память и другие вычислительные ресурсы

· процессы имеют отдельные адресные пространства, тогда как потоки выполнения совместно используют их адресное пространство

· процессы взаимодействуют только через предоставляемые системой механизмы связей между процессами

· переключение контекста между потоками выполнения в одном процессе, как правило, быстрее, чем переключение контекста между процессами.

Такие системы, как Windows NT и OS/2, как говорят, имеют «дешёвые» потоки выполнения и «дорогие» процессы. В других операционных системах разница между потоками выполнения и процессами не так велика, за исключением расходов на переключение адресного пространства, которое подразумевает использование буфера ассоциативной трансляции.

Многопоточность[править | править вики-текст]

Основная статья: Многопоточность

Многопоточность, как широко распространённая модель программирования и исполнения кода, позволяет нескольким потокам выполняться в рамках одного процесса. Эти потоки выполнения совместно используют ресурсы процесса, но могут работать и самостоятельно. Многопоточная модель программирования предоставляет разработчикам удобную абстракцию параллельного выполнения. Однако, пожалуй, наиболее интересное применение технологии имеется в том случае, когда она применяется к одному процессу, что позволяет его параллельное выполнение на многопроцессорной системе.

Это преимущество многопоточной программы позволяет ей работать быстрее на компьютерных системах, которые имеют несколько процессоров, процессор с несколькими ядрами или на кластере машин — из-за того, что потоки выполнения программ естественным образом поддаются действительно параллельному выполнению процессов. В этом случае программисту нужно быть очень осторожным, чтобы избежать состояния гонки, и другого неинтуитивного поведения. Для того, чтобы правильно манипулировать данными, потоки выполнения должны часто проходить через процедуру рандеву, чтобы обрабатывать данные в правильном порядке. Потокам выполнения могут также потребоваться мьютексы (которые часто реализуются с использованием семафоров), чтобы предотвратить одновременное изменение общих данных или их чтение во время процесса изменения. Неосторожное использование таких примитивов может привести к тупиковой ситуации.

Другим использованием многопоточности, применяемым даже для однопроцессорных систем, является возможность для приложения реагирования на ввод данных. В однопоточных программах, если основной поток выполнения заблокирован выполнением длительной задачи, всё приложение может оказаться в замороженном состоянии. Перемещая такие длительные задачи в рабочий поток, который выполняется параллельно с основным потоком, становится возможным для приложений продолжать реагировать на действия пользователя во время выполнения задач в фоновом режиме. С другой стороны, в большинстве случаев многопоточность — не единственный способ сохранить чувствительность программы. То же самое может быть достигнуто через асинхронный ввод-вывод или сигналы в UNIX.[1]

Операционные системы планируют выполнение потоков одним из двух способов:

1. Приоритетная многопоточность, вообще говоря, считается более совершенным подходом, так как она позволяет операционной системе определить, когда должно происходить переключение контекста. Недостаток приоритетной многопоточности состоит в том, что система может сделать переключение контекста в неподходящее время, что приводит к инверсии приоритета и другим негативным эффектам, которых можно избежать, применяя кооперативную многопоточность.

2. Кооперативная многопоточность полагается на сами потоки и отказывается от управления, если потоки выполнения находятся в точках остановки. Это может создать проблемы, если поток выполнения ожидает ресурс, пока он не станет доступным.

До конца 1990-х процессоры в настольных компьютерах не имели поддержки многопоточности, так как переключение между потоками, как правило, происходило быстрее, чем полное переключение контекста процесса. Процессоры во встраиваемых системах, которые имеют более высокие требования к поведению в реальном времени, могут поддерживать многопоточность за счёт уменьшения времени на переключение между потоками, возможно, путём распределения выделенных регистровых файлов для каждого потока выполнения, вместо сохранения/восстановления общего регистрового файла. В конце 1990-х идея выполнения инструкций нескольких потоков одновременно, известная как одновременная многопоточность, под названием Hyper-Threading, достигла настольных компьютеров с процессором Intel Pentium 4. Потом она была исключена из процессоров архитектуры Intel Core и Core 2, но позже восстановлена в архитектуре Core i7.

Критики многопоточности утверждают, что увеличение использования потоков имеет существенные недостатки:

Хотя кажется, что потоки выполнения — это небольшой шаг от последовательных вычислений, по сути они представляют собой огромный скачок. Они отказываются от наиболее важных и привлекательных свойств последовательных вычислений: понятности, предсказуемости и детерминизма. Потоки выполнения, как модель вычислений, являются потрясающе недетерминированными, и работа программиста становится одним из обрезков этого недетерминизма.[2]

Date: 2015-07-27; view: 613; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию