Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Пример Д1
Механическая система (рис. Д1,а) состоит из сплошного однородного цилиндрического катка 1, подвижного блока 2, ступенчатого шкива 3 с радиусами ступеней и и радиусом инерции относительно оси вращения , блока 4 и груза 5 (коэффициент трения груза о плоскость равен ). Тела системы соединены нитями, намотанными на шкив 3. К центру блока 2 прикреплена пружина с коэффициентом жесткости ; ее начальная деформация равна нулю. Система приходит в движение из состояния покоя под действием силы , зависящей от перемещения точки ее приложения. На шкив 3 при движении действует постоянный момент сил сопротивления. Дано: кг, кг, кг, кг, кг, м, м, м, , Н/м, , Н, м. Определить: в тот момент времени, когда . Решение: 1. Рассмотрим движение неизменяемой механической системы, состоящей из весомых тел 1, 3, 5 и невесомых тел 2, 4, соединенных нитями. Изобразим действующие на систему внешние силы: активные , , , , , реакции , , , , натяжение нити , силы трения , и момент . Для определения воспользуемся теоремой об изменении кинетической энергии: . (1) 2. Определяем и . Так как в начальный момент система находилась в покое, то . Величина равна сумме энергий всех тел системы: . (2) Учитывая, что тело 1 движется плоскопараллельно, тело 5 – поступательно, а тело 3 вращается вокруг неподвижной оси, получим , , , (3) Все входящие сюда скорости надо выразить через искомую . Для этого предварительно заметим, что , где – любая точка обода радиуса шкива 3 и что точка – мгновенный центр скоростей катка 1, радиус которого обозначим . Тогда , . (4) Кроме того, входящие в (3) моменты инерции имеют значения , . (5) Подставив все величины (4) и (5) в равенства (3), а затем, используя равенство (2), получим окончательно . (6) 3. Найдем сумму работ всех действующих внешних сил при перемещении, которое будет иметь система, когда центр катка 1 пройдет путь . Введя обозначения: – перемещение груза 5 (), – угол поворота шкива 3, и – начальное и конечное удлинения пружины, получим , , , , . Работы остальных сил равны нулю, т.к. точки и , где приложены силы , и – мгновенные центры скоростей; точки, где приложены силы , и – неподвижны; а сила – перпендикулярна перемещению груза. По условиям задачи, . Тогда , где – перемещение точки (конца пружины). Величины и надо выразить через заданное перемещение . Для этого учтем, что зависимость между перемещениями здесь такая же, как и между соответствующими скоростями. Тогда, так как (равенство уже отмечалось), то и . Из рис. Д1,б видно, что , а так как точка является мгновенным центром скоростей для блока 2 (он как бы «катится» по участку нити ), то ; следовательно, и . При найденных значениях и для суммы вычисленных работ получим . (7) Подставляя выражения (6) и (7) в уравнение (1) и учитывая, что , придем к равенству . (8) Из равенства (8), подставив в него числовые значения заданных величин, найдем искомую угловую скорость . Ответ: с–1. Date: 2015-07-27; view: 376; Нарушение авторских прав |