Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Продажа гибридных Prius с подзарядкой от сети начнётся в 2011 г





17.12.2009 [20:08], Денис Борн

Toyota Motor поведала о планах начала поставок первого гибридного автомобиля компании, который можно подзаряжать от электрической сети (plug-in hybrid vehicle, PHEV). Крупнейший в мире автопроизводитель надеется, что спрос позволит продать несколько десятков тысяч Prius. Пробная партия в количестве 600 единиц будет предоставлена правительственным организациям, коммерческому сектору и университетам в первой половине 2010 года: 230 машин получит Япония, 200 – Европа и 150 – США. Около 100 Prius заказал французский Страсбург. Toyota надеется таким образом собрать больше данных о эксплуатационных качествах гибрида.

Новый Prius способен проехать довольно скромное расстояние на одном заряде аккумуляторов – 23,4 км в режиме использования только электрического привода на скорости до 100 км/ч. Эффективность использования топлива в гибридном режиме составляет 57 км на литр (количество выбрасываемого углекислого газа при этом – 41 г/км) с учётом дорожных условий Японии. Для обычного Prius этот показатель равен 30,6 км. Комбинация системы подзарядки от сети с обычной технологией гибридных транспортных средств позволяет снизить производственные затраты по сравнению с полностью электрическим автомобилем. Кроме того, такое решение устраняет беспокойство относительно исчерпания заряда в неподходящий момент. Ёмкость литий-ионных батарей равна 5,2 кВтч, расход заряда – 6,57 км/кВтч. Toyota также намерена выпустить на рынок PHEV на топливных ячейках, но произойдёт это только в 2015 году. Японские автоконцерны делают успехи на поприще разработки гибридных автомобилей вследствие высоких цен на нефть в стране и беспокойства об уровне выбросов парниковых газов, ответственных за глобальное потепление. На данный момент по всему миру продано 1,25 млн Prius предыдущих поколений с момента первого выпуска в 1997 году, что делает этот гибрид по данным производителя самым популярным в мире. Розничные продажи нового Prius начнутся в 2011 году по "доступной" стоимости.

Преимущества[править | править исходный текст]

· Отсутствие вредных выхлопов в месте нахождения автомобиля.

· Более высокая экологичность ввиду отсутствия необходимости применения нефтяного топлива, антифризов, моторных масел, а также фильтров для этих жидкостей.

· Простота техобслуживания, большой межсервисный пробег, дешевизна ТО и ТР[2].

· Низкая пожаро- и взрывоопасность при аварии.

· Простота конструкции (простота электродвигателя и трансмиссии; отсутствие необходимости в переключении передач ввиду высокой приспособляемости крутящего момента ТЭД к изменениям внешней нагрузки, низкой устойчивой частоты вращения вала электродвигателя, возможности его реверсирования) и управления, высокая надёжность и долговечность экипажной части (до 20—25 лет) в сравнении с обычным автомобилем.

· ДВС является источником возникновения динамических нагрузок и крутильных колебаний в трансмиссии автомобиля и источником вибраций, передающихся несущей конструкцииавтомобиля, на электромобиле ТЭД динамически уравновешен.[9]

· Возможность подзарядки от бытовой электрической сети (розетки), но такой способ в 5—10 раз дольше, чем от специального высоковольтного зарядного устройства.

· Автомобиль с электроприводом — единственный вариант применения на легковом автотранспорте дешевой (по сравнению с нефтяным или водородным топливом) энергии, вырабатываемой АЭС, ГЭС и т. п.

· Массовое применение электромобилей смогло бы помочь в решении проблемы «энергетического пика» за счёт подзарядки аккумуляторов в ночное время.

· ТЭД имеют КПД до 90-95 % по сравнению с 22-42 % у ДВС[10].

· Меньший шум за счёт меньшего количества движимых частей и механических передач.

· Высокая плавность хода с широким интервалом изменения частоты вращения вала двигателя.

· Возможность подзарядки аккумуляторов во время рекуперативного торможения.

· Возможность торможения самим электродвигателем (режим электромагнитного тормоза) без использования механических тормозов — отсутствие трения и, соответственно, износа тормозов.

· Простая возможность реализации полного привода и торможения путем применения схемы «мотор-колесо», что позволяет, помимо прочего, легко реализовать систему поворота всех четырёх колес, вплоть до положения, перпендикулярного кузову электромобиля.

Недостатки[править | править исходный текст]

Аккумулятор электромобиля

· Аккумуляторы за полтора века эволюции так и не достигли плотности энергии и стоимости, сопоставимой с горючим топливом, однако и этого уже достаточно, чтобы почти на равных конкурировать с автомобилями на бензине. В ноябре 2005 года А123 System анонсировала новый высокомощный быстрозаряжающийся элемент питания, основанный на исследованиях, лицензированных MIT. Первая партия элементов была выпущена в 1-м квартале 2006 года и использовалась для питания электроинструментов DeWalt и стартеров авиадвигателей. Идея нового аккумулятора заключается в активизации литиево-ионного обмена между электродами. С помощью наночастиц удалось развить обменную поверхность электродов и получить более интенсивный ионный поток. Чтобы исключить слишком сильное нагревание и возможный взрыв электродов, авторы разработки применили в катодах вместо лития/оксида кобальта литий/фосфат железа. Новые батареи отличаются не только большой ёмкостью, но и быстротой зарядки. Чтобы полностью зарядить их, требуется всего 30 минут.

· Проблемой является производство и утилизация аккумуляторов, которые часто содержат ядовитые компоненты (например, свинец или литий) и кислоты.

· Часть энергии аккумуляторов тратится на охлаждение или обогрев салона автомобиля, а также питание прочих бортовых энергопотребителей (например, свет или воздушный компрессор). Но вряд ли это можно назвать существенным недостатком.

· Для массового применения электромобилей требуется создание соответствующей инфраструктуры для подзарядки аккумуляторов («автозарядные» станции). Однако, когда-то и АЗС тоже не существовало.

· При массовой зарядке электромобилей от бытовой сети возрастают перегрузки электрических сетей «последней мили», что чревато снижением качества энергоснабжения и риском локальных аварий сети.

· Длительное время зарядки аккумуляторов по сравнению с заправкой топливом. Однако, в отличие от АЗС, месторасположения зарядных станций не имеют столь строгих ограничений и могут располагаться в более удобных местах, например, на парковках возле супермаркетов, и могут быть более распространены, чем автозаправочные станции.

· Малый пробег большинства электромобилей на одной зарядке. Литиевая батарея ёмкостью 24 кВт·ч позволяет электромобилю проехать около 160 км. Использование кондиционера, отопителя салона, загрузка электромобиля пассажирами или грузом, движение с частым разгоном/торможением и скоростью более 90-100 км/ч уменьшают пробег до 80 км. Однако «большинство» не означает «все». Электрический седан Tesla Model S имеет батарею ёмкостью 85 кВт·ч которая позволяет ему преодолевать 480 километров на скорости 90 км/ч, что сопоставимо с пробегом большинства бензиновых машин.

· Высокая стоимость литиевых батарей, или высокий вес достаточно ёмких свинцовых батарей.

· Ухудшение характеристик батарей на холоде. Но то, что подразумевается под этим ухудшением, часто понимается не совсем верно. Считается, что на морозе быстрее садится аккумулятор. При этом часто приводят в пример 12-вольтовый автомобильный АКБ, который не в силах завести машину в −20. Вследствие чего выводят вердикт — сел. На самом деле всё несколько иначе — стартер требует токи, в несколько раз превышающие номинал АКБ (ёмкость свинцовой АКБ — 0,72 кВт·ч; мощность стартера около 4 кВт), в мороз электролит густеет, и ему становится сложнее быстро отдавать заряд. Но ёмкость его как была 60 А·ч, так и осталась, в чём легко убедиться, подключив к нему нагрузку поменьше. Электромобилю же для езды требуется мощность во много раз меньше номинала батареи (ёмкость аккумулятора Теслы 85 кВт·ч, электромотору, в среднем, для движения требуется лишь 10 кВт) вследствие чего нагрузка на неё приходится более щадящая. Отрицательные температуры сказываются только на динамике разгона электромобилей, при которой мощность потребления может подскакивать до 200 кВт и выше[ источник не указан 47 дней ]. В этом случае батареи действительно испытывают затруднения с отдачей большой мощности.

· Деградация литиевых и других батарей с возрастом. В лучших моделях литиевых батарей через 5-8 лет остается менее 80 % емкости[ источник не указан 47 дней ].

· Мощность, вырабатываемая всеми современными электростанциями, значительно меньше, чем мощность всех современных автомобилей. Вырабатываемой энергии не хватит на одновременную зарядку очень большого количества электромобилей. Однако следует учесть, что выработка бензина также требует электричества (до 5 кВт·ч на литр), поэтому по мере уменьшения мирового потребления бензина мощности электростанций будут перераспределяться в сторону энергообеспечения электромобилей.

· Для стран с холодным климатом очень остро стоит вопрос отопления салона. Для эффективного отопления салона машины средних размеров[ что? ] нужно около 2-3 кВт тепловой мощности, в то время как ёмкость батареи продающегося в России Mitsubishi i-MiEV составляет около 16 кВт·ч, и включенная печь может существенно отразиться на его запасе хода. Однако существуют электромобили и с более ёмкими батареями, как в случае с Tesla Model S, включенной печки которой хватит на двое суток непрерывной работы.

Сравнение с гибридными автомобилями[править | править исходный текст]

Преимущества[править | править исходный текст]

· Общая простота конструкции и управления в сравнении с гибридными автомобилями.

· Меньшее количество механических элементов и деталей.

· Более высокая надежность.

· Простота ремонта и обслуживания, а, как следствие, и более низкие затраты при эксплуатации.

· Меньшее загрязнение окружающей среды.

· Отсутствие необходимости в топливе. Однако стоит заметить, что некоторые гибриды тоже могут обходиться без топлива (технология PHEV или Plug In Hybrid).

· Существенная экономия на 1 км пути в смешанном или загородном цикле.

· Более простая электроника, управляющая тяговой установкой, так как нет необходимости управлять отдельно разнородными двигателями.

· В большинстве случаев более низкая стоимость.

· Отсутствие трансмиссии, в отличие от механических гибридов.

· Аккумуляторы электромобиля работают очень активно, а, следовательно, довольно сильно нагреваются. Аккумуляторы же гибрида работают в более щадящем режиме и мало греются. Следовательно, при низких температурах окружающей среды ёмкость аккумуляторов у гибридного автомобиля будет существенно снижаться. Однако некоторые гибридные автомобили (например, Toyota Prius 3) имеют общую гибридную систему охлаждения, нагревающую зимою тяговый аккумулятор от ДВС, а летом, соответственно, охлаждающую.

Недостатки[править | править исходный текст]

· Большая масса аккумуляторов.

· Длительная зарядка аккумуляторов, однако существуют способы «быстрой зарядки» до неполной ёмкости батареи.

· В большинстве случаев низкие динамические показатели.

· В некоторых гибридах вообще отсутствуют электрические аккумуляторные батареи.

· Наиболее крупные автомобилестроительные компании после 2000-х уделяют мало внимания электромобилям в пользу гибридов.

· В некоторых моделях гибридных автомобилей возможна реализация тяги отдельно от ДВС и ТЭД. То есть при выходе из строя одного из них возможно движение только на другом.

Различные варианты реализации электромобиля[править | править исходный текст]

Электромобили, оснащенные аккумуляторными батареями[править | править исходный текст]

Аккумуляторные электромобили являются самым первым и простым видом электромобилей. Первые работоспособные модели были построены ещё в конце XIX века. Активно использовались в США вплоть до 20-х годов XX века. В течение 30-40 гг. наиболее активно применялись в Германии. С 1947 г. широко используются в Англии.[9]

Принципиальная схема аккумуляторного электромобиля в общем случае следующая: аккумуляторная батарея через силовую электропроводку и систему регулирования (управления) тягового электродвигателя соединяется с ТЭД, который, в свою очередь, через карданный вал передаёт главной передаче крутящий момент.[9]

Технико-экономические параметры данного типа электромобилей, прежде всего, зависят от характеристик применяемых аккумуляторных батарей. Величина желаемого пробега электромобиля на один заряд батареи (запас хода) прямо пропорциональна отношению веса аккумуляторной батареи к полному весу электромобиля. Зависимость веса батареи от грузоподъемности электромобиля значительно выше, чем зависимость веса карбюраторного двигателя от грузоподъемности автомобиля.[9]

Батареи располагаются на шасси электромобиля чаще всего таким образом, чтобы имелась возможность: осуществлять быструю замену батарей аккумуляторов, легкого доступа к выводным штырям и отверстиям для заливки электролита. Для этого чаще всего батареи располагают в двух ящиках по бокам электромобиля.[9]

Электромобили, оснащенные топливными элементами[править | править исходный текст]

Этот раздел статьи ещё не написан. Согласно замыслу одного из участников Википедии, на этом месте должен располагаться специальный раздел. Вы можете помочь проекту, написав этот раздел.  

Характерной особенностью электромобилей, оснащенных ТЭ (топливными элементами), является то, что масса энергосиловой установки не изменяется при изменении еёэнергоемкости, а увеличение запаса хода может быть достигнуто за счет увеличения массы топлива в топливных баках (как в автомобилях с ДВС)[2].

Таким образом, с одной стороны, ТЭ позволяют существенно повысить запас хода электромобиля, но, с другой стороны, топливо для них имеет высокую стоимость, а также может быть токсичным и при переработке в ТЭ выделять в атмосферу вредные вещества.

Комбинированные энергоустановки[править | править исходный текст]

В конце 60-х и начале 70-х годов был разработан ряд опытных образцов электромобилей с энергосиловыми установками типа «Аккумуляторные батареи — Топливные элементы» [2]:

· В Англии на базе DAF 44 был создан электромобиль со смешанной системой питания от аккумуляторных батарей и от гидрозийно-воздушных ТЭ с удельной мощностью 160 Вт/кг. При разгоне основная нагрузка ложилась на батареи, в остальных режимах — на топливные элементы, подзаряжающие аккумуляторную батарею.

· В США на базе Austin A-40 был изготовлен электромобиль с комбинированной системой, включающей щелочные водородно-воздушные элементы и свинцово-кислотныеаккумуляторные батареи. Запас хода достигал 320 км.

Электромобили, использующие другие источники энергии[править | править исходный текст]

Этот раздел статьи ещё не написан. Согласно замыслу одного из участников Википедии, на этом месте должен располагаться раздел, посвящённый сравнению классических электромобилей с транспортными средствами, использующими энергию солнца, ветра и т.п.. Вы можете помочь проекту, написав этот раздел.  

Электромобили на солнечных батареях[править | править исходный текст]

Существует множество конструкций электромобилей на солнечных батареях, так называемых «солнцемобилей», однако их общей проблемой является низкий КПД батарей (обычно порядка 10-15 %, передовые разработки позволяют добиться 30%), что не позволяет запасать значительное количество энергии за день, сокращая суточный пробег; к тому же солнечные элементы бесполезны ночью и в пасмурную погоду. Вторая проблема — дороговизна солнечных батарей.

Среди примеров солнцемобилей можно назвать прототипы Venturi Astrolab, Venturi Eclectic (дополнительно оснащённый ветровой установкой), концепт-кар ItalDesign-Giugiaro Quaranta (впрочем, энергии, которую накапливают солнечные батареи, хватает в нём разве что на питание бортовой электроники), итальянский Phylla, а также SolarWorld GT, который в 2012 году совершил кругосветный марафон[11]. Последний оборудован двумя мотор-колёсами Loebbemotor номинальной мощностью 1,4 кВт каждое (пиковая мощность — 4,2 кВт каждое, или в сумме — 11,42 лошадиные силы). Благодаря малой массе (карбоновый кузов позволил добиться веса 260 кг, сам кузов весит 85 кг) и аэродинамически совершенной форме кузова (Сх = 0,137), удалось добиться максимальной скорости 120 км/ч. Круизная скорость — 50 км/ч (при работе моторов на номинальной мощности), на ней SolarWorld GT может проехать 275 км — больше, чем многие современные электромобили. Этот пробег обеспечивает 21-килограммовая литий-ионная батарея ёмкостью 4,9 кВч[12].

Также существуют гибридомобили, которые приводятся в движение как солнечной энергией, так и педалями. В основном, это самодельные машины, однако существуют проекты по серийному выпуску подобного транспорта, в частности, SolarLab rickshaw и венгерский Antro Solo.

Для поощрения производства солнцемобилей и их популяризации существуют соревнования вроде трансавстралийского ралли «Всемирный солнечный вызов (англ.)». На подобных соревнованиях обычно состязаются студенты технических ВУЗов, создающие подобные модели в качестве дипломных работ.

Производство и эксплуатация[править | править исходный текст]

Инфраструктура зарядки электромобилей[править | править исходный текст]

Основная статья: Инфраструктура зарядки электромобилей

Современное применение[править | править исходный текст]

2011 Chevrolet Volt

Электромобиль Reva NXR (Индия) ~9,995 евро

Электромобиль для коротких (до 40 км) поездок — NEV от Dynasty IT

Электроцикл украинского производства

В 2004 году в США эксплуатировалось 55852 электромобиля. Кроме этого, в США эксплуатируется большое количество самодельных электромобилей. Наборы комплектующих для конвертации автомобиля в электромобиль продаются в магазинах.

Мировой лидер по производству электрического транспорта — Китай.

Помимо этого, небольшие электромобили упрощённой конструкции (электрокары, электропогрузчики и т. д.) широко применяются для перевозки грузов на вокзалах, в цехах и больших магазинах, а также как аттракцион. В данном случае все недостатки в виде малого запаса хода и скорости, высокой собственной стоимости батарей и массы, перекрываются преимуществами: отсутствием вредных выхлопов и шума, что принципиально важно для работы в закрытых людных помещениях. Формально к электромобилям такие машины относить не принято из-за специфичности их применения.

Основной фактор, сдерживающий массовое производство электромобилей, — малый спрос, обусловленный высокой стоимостью и малым пробегом от одной зарядки[13]. Существует точка зрения, что широкое распространение электромобилей сдерживается дефицитом аккумуляторов и их высокой ценой. Для разрешения этих проблем многие автопроизводители создали совместные предприятия с производителями аккумуляторов. Например, Volkswagen AG создал совместное предприятие с Sanyo Electric, Nissan Motor с NEC Corporation, и т. д.

 

 

Солнечный коллектор — устройство для сбора тепловой энергии Солнца (гелиоустановка), переносимой видимым светом и ближниминфракрасным излучением. В отличие от солнечных батарей, производящих непосредственно электричество, солнечный коллектор производит нагрев материала-теплоносителя.

Применение[править | править исходный текст]

Солнечный водонагреватель на жилом доме. Мальта.

Солнечные коллекторы применяются для отапливания промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд. Наибольшее количество производственных процессов, в которых используется тёплая и горячая вода (30—90 °C), проходят в пищевой и текстильной промышленности, которые таким образом имеют самый высокий потенциал для использования солнечных коллекторов.

В Европе в 2000 году общая площадь солнечных коллекторов составляла 14,89 млн м², а во всём мире — 71,341 млн м².

Солнечные коллекторы — концентраторы могут производить электроэнергию с помощью фотоэлектрических элементов или двигателя Стирлинга.

Солнечные коллекторы могут использоваться в установках для опреснения морской воды. По оценкам Германского аэрокосмического центра (DLR) к 2030 году себестоимость опреснённой воды снизится до 40 евроцентов за кубический метр воды[3]

В России[править | править исходный текст]

По исследованиям ОИВТ РАН в тёплый период (с марта—апреля по сентябрь) на большей части территории России средняя дневная сумма солнечного излучения составляет 4,0-5,0 кВтч/м² (на юге Испании — 5,5-6,0 кВтч/м², на юге Германии – до 5 кВтч/м²). Это позволяет нагревать для бытовых целей около 100 л воды с помощью солнечного коллектора площадью 2 м² с вероятностью до 80%, то есть практически ежедневно. По среднегодовому поступлению солнечной радиации лидерами являются Забайкалье, Приморье и ЮгСибири. За ними идут юг европейской части (приблизительно до 50º с.ш.) и значительная часть Сибири.

Использование солнечных коллекторов в России составляет 0,2 м²/1000 чел. На Кипре эксплуатируется около 800 м²/1000 чел., в Австрии 450 м²/1000 чел., в Германии 140 м²/1000 чел.

В летнем периоде, большинство районов России вплоть до 65º с.ш. характеризуются высокими значениями среднедневной радиации. В зимнее время количество поступающей солнечной энергии снижается в зависимости от широтного расположения установки в разы.

Для всесезонного применения установки должны иметь большую поверхность, два контура с антифризом, дополнительные теплообменники. В таком случае применяется вакуумированные коллекторы, поскольку больше разность температур между нагреваемым теплоносителем и наружным воздухом. Однако такая конструкция выше по стоимости.[1]

Сооружение коллекторов в настоящее время осуществляет­ся, в основном, в Красно­дарском крае, Бурятии, в Приморском и Хабаровском краях.[4]

Солнечные башни[править | править исходный текст]

Солнечная башня, Севилья, Испания. Построена в 2007 г.

Впервые идея создания солнечной электростанции промышленного типа была выдвинута советским инженеромН. В. Линицким в 1930-х гг. Тогда же им была предложена схема солнечной станции с центральным приёмником на башне. В ней система улавливания солнечных лучей состояла из поля гелиостатов — плоских отражателей, управляемых по двум координатам. Каждый гелиостат отражает лучи солнца на поверхность центрального приёмника, который для устранения влияния взаимного затенения поднят над полем гелиостатов. По своим размерам и параметрам приёмник аналогичен паровому котлу обычного типа.

Экономические оценки показали целесообразность использования на таких станциях крупных турбогенераторовмощностью 100 МВт. Для них типичными параметрами являются температура 500 °C и давление 15 МПа. С учётом потерь для обеспечения таких параметров требовалась концентрация порядка 1000. Такая концентрация достигалась с помощью управления гелиостатами по двум координатам. Станции должны были иметь тепловые аккумуляторы для обеспечения работы тепловой машины при отсутствии солнечного излучения.

В США с 1982 г. было построено несколько станций башенного типа мощностью от 10 до 100 МВт. Подробный экономический анализ систем этого типа показал, что с учётом всех затрат на сооружение 1 кВт установленной мощности стоит примерно $1150. Один кВт·ч электроэнергии стоил около $0,15.

Параболоцилиндрические концентраторы[править | править исходный текст]

Параболоцилиндрические концентраторы.

Параболоцилиндрические концентраторы имеют форму параболы, протянутую вдоль прямой.

В 1913 году Франк Шуман (Frank Shuman) построил в Египте водоперекачивающую станцию из параболоцилиндрических концентраторов. Станция состояла из пяти концентраторов каждый 62 метра в длину. Отражающие поверхности были изготовлены из обычных зеркал. Станция вырабатывала водяной пар, с помощью которого перекачивала около 22 500 литров воды в минуту[5].

Параболоцилиндрический зеркальный концентратор фокусирует солнечное излучение в линию и может обеспечить его стократную концентрацию. В фокусе параболы размещается трубка с теплоносителем (масло), или фотоэлектрический элемент. Масло нагревается в трубке до температуры 300—390 °C. В августе 2010 года специалисты NREL испытали установку компании SkyFuel. Во время испытаний была продемонстрирована термальная эффективность параболоцилиндрических концентраторов 73 % при температуре нагрева теплоносителя 350 °C[6].

Параболоцилиндрические зеркала изготовляют длиной до 50 метров. Зеркала ориентируют по оси север—юг, и располагают рядами через несколько метров. Теплоноситель поступает в тепловой аккумулятор для дальнейшей выработки электроэнергии паротурбинным генератором.

С 1984 года по 1991 год в Калифорнии было построено девять электростанций из параболоцилиндрических концентраторов общей мощностью 354 МВт. Стоимость электроэнергии составляла около $0,12 за кВт·ч.

Германская компания Solar Millennium AG строит во Внутренней Монголии (Китай) солнечную электростанцию. Общая мощность электростанции увеличится до 1000 МВт к 2020 году. Мощность первой очереди составит 50 МВт.

В июне 2006 года в Испании была построена первая термальная солнечная электростанция мощностью 50 МВт. В Испании к 2010 году может быть построено 500 МВт электростанций с параболоцилиндрическими концентраторами.

Всемирный банк финансирует строительство подобных электростанций в Мексике, Марокко, Алжире, Египте и Иране.

Концентрация солнечного излучения позволяет сократить размеры фотоэлектрического элемента. Но при этом снижается его КПД, и требуется некая система охлаждения.

Параболические концентраторы[править | править исходный текст]

Экспериментальный коллектор НПО «Астрофизика»

Параболические концентраторы имеют форму параболоида вращения. Параболический отражатель управляется по двум координатам при слежении за солнцем. Энергия солнца фокусируется на небольшой площади. Зеркала отражают около 92 % падающего на них солнечного излучения. В фокусе отражателя на кронштейне закреплён двигатель Стирлинга, или фотоэлектрические элементы. Двигатель Стирлинга располагается таким образом, чтобы область нагрева находилась в фокусе отражателя. В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.

В феврале 2008 года Национальная лаборатория Sandia достигла эффективности 31,25 % в установке, состоящей из параболического концентратора и двигателя Стирлинга [7].

В настоящее время строятся установки с параболическими концентраторами мощностью 9—25 кВт. Разрабатываются бытовые установки мощностью 3 кВт. КПД подобных систем около 22—24 %, что выше, чем у фотоэлектрических элементов. Коллекторы производятся из обычных материалов: сталь, медь, алюминий, и т. д. без использования кремния «солнечной чистоты». В металлургии используется так называемый «металлургический кремний» чистотой 98 %. Для производства фотоэлектрических элементов используется кремний «солнечной чистоты», или «солнечной градации» с чистотой 99,9999 % [8].

В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09—0,12 за кВт·ч. Департамент энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04—0,05 к 2015 —2020 году.

Компания Stirling Solar Energy разрабатывает солнечные коллекторы крупных размеров — до 150 кВт с двигателями Стирлинга. Компания строит в южной Калифорнии крупнейшую в мире солнечную электростанцию. До 2010 года будет 20 тысяч параболических коллекторов диаметром 11 метров. Суммарная мощность электростанции может быть увеличена до 850 МВт

 

 

Производство солнечных батарей в России в последние годы заметно выросло. И это закономерно, поскольку мировая солнечная энергетика растет темпами 50 % в год. Однако доля России на мировом рынке производства батарей составляет всего 0,8 %. На территории России (Москва, Краснодар, Рязань) функционируют довольно крупные производства солнечной индустрии, мощностью от 10 до 15 МВт/год. Но большая часть их продукции шла на экспорт. Только ОАО РЗМКП работала на российский рынок. Многие компании перевозили свои производства в Европу, сворачивая работу в России.

И все же, производство солнечных батарей в России находится не в лучшем положении, в основном из-за мощной конкуренции со стороны Китая, Японии, США, Германии, которые уже вышли на уровень производства 1 ГВт в год. В то же время, по статистике, величина солнечного излучения в Западной России находится на одном уровне с Германией и превышает показатели скандинавских стран, в которых солнечная энергетика развивается высокими темпами.

Сегодня производство солнечных батарей в России ориентировано больше на сборку, чем на полное производство модулей, так как это гораздо проще и менее затратно. Кроме того, российские батареи имеют более высокое качество, чем китайские, благодаря качественному сырью. Однако производство комплектующих для систем солнечного энергоснабжения в России пока не поставлено. А учитывая, что у конкурентов качество этой продукции на должном уровне и давно отлажено все производство, возникают определенные трудности с развитием данного направления.

Кроме того, уровень производства электроники в России еще не дорос уровня, способного создавать на мировом рынке ощутимую конкуренцию. А агрессивная политика конкурентов может вообще задавить эту отрасль и, как следствие все производство солнечных батарей в России.

Важным моментом является себестоимость производства. Цена кремниевых модулей сегодня — €0,9 за 1 ВT + транспортные затраты + растаможивание. В итоге себестоимость составит более €2 за 1 ВT. А это сказывается на цене готового модуля, которая составляет более 1000 евро при мощности в 235 B. При этом европейские цены на ту же продукция не превышают 800 евро. В США себестоимость этой продукции еще на 20 % ниже. Кроме того, уже сегодня для Востока России дешевле закупить батареи у Китая, чем транспортировать их из европейской части России.

Важным шагом на пути развития производства солнечных батарей в России станет законодательная поддержка. Сегодня же такой программы не существует. Отсутствует какое-либо стимулирование со стороны государства, популяризация этого вида энергии в России. Сегодня срок окупаемости солнечного оборудования для предприятий составляет 25 лет. Для частных лиц ситуации более оптимистичная: солнечная водонагревательная установка окупится за 5 лет. В то же время в России существуют регионы, где себестоимость электричества превышает 65 руб/кВт*ч. В таких районах солнечная электростанция окупит себя за 2 года.

Среди наибольших российских производителе6 можно отметить: Sun Shines (Россия, Москва), ПХМЗ (Подольск), РЗМП (Рязань), Телеком-СТВ (Зеленоград), ВИЭКо (Москва), Амекс (Зеленоград), Квант (Москва), Нитол (Усолье-Сибирское) и др.

 

Описание товара:

Мы часто задумываемся о возможности зарядки своего мобильного устройства. Ведь часто случается так, что мы просто оказываемся «за бортом» из-за опустевшего аккумулятора. Тут лучше всего подойдут зарядки работающие на энергии солнца. Из всех нестандартных вариантов решения проблемы зарядки в полевых условиях, они наиболее реальные. Такой гаджет сможет вас обеспечить хоть какой-то зарядкой даже в пасмурную погоду.Соединение производится через два не универсальных разъёма. Зарядка производится из встроенного аккумулятора. Его, в свою очередь, вы можете зарядить не только непосредственно от солнца, но и от обычной розетки электросети. Она может полностью зарядить аккумулятор вашего телефона за час.

400-600р шт

Date: 2015-07-22; view: 731; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию