Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Принцип действия солнечной батареи
Преобразование энергии в фотоэлектрическом преобразователь основано на фотовольтаическом эффекте (фотоэффекте), который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения. Фотоэффект — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения)[1]. В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект. Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком. Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта. Неоднородность структуры может быть получена легированием (добавление небольших количеств примесей с целью контролируемого изменения электрических свойств полупроводника, в частности, его типа проводимости) одного и того же полупроводника различными примесями (создание p - n-переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны-энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны. Возможны также различные комбинации перечисленных способов. 2.1.2 Светодиодный уличный светильник SVETECO-96/13248/160/Ш Многофункциональный уличный светодиодный светильник SVETECO-96/13248/160/Ш, СВЕТЕКО-96/13248/160/Ш для освещения автомобильных дорог, городских улиц, парков, а также территории предприятий. Предназначен для замены уличных светильников ЖКУ-400. Модель SVETECO 96/13248/160/Ш является на данный момент самым оптимальным вариантом для освещения автомагистралей, обладая «правильной» широкой уличной диаграммой (с шагом установки опор освещения 40 метров) и равномерно освещая проезжую часть.
Рисунок 2.1 Светодиодный уличный светильник SVETECO-96 Технические характеристики: - питание от сети переменного тока:напряжением (220 ± 22); частотой (50 ± 2) Гц; - защита от перенапряжения: до 1000 Вольт; - потребляемая мощность:160 Вт; - светоотдача с одного светодиода:138 Люмен (Лм); - количество светодиодов:96 шт; - световой поток:13248 Лм; - температура свечения:5000-5500 К; - габаритные размеры ВхДхШ:120х519х360 мм; - масса:12.5 кг; - степень защиты:IP67; - рабочая температура:от -63 до +60°С. Конструкция Цельнометаллический алюминиевый профиль с защитным штампованным кожухом из листовой стали. Алюминиевый корпус светильника с высокой площадью теплоотвода, позволяет обеспечить комфортный температурный режим работы светодиодов и электронных компонентов, что обеспечивает непревзойденный режим работы в 70 000 часов (20 лет). Система вторичной оптики S-optics позволяет правильно направить световой поток на освещаемую поверхность. В светильниках Sveteco 96 применяется широкая уличная диаграмма. При этом не тратится лишняя энергия на освещение не нужных зон. На автотрассе применение светильников Sveteco 96 со вторичной оптикой позволяет добиться равномерной засветки дорожного полотна: светло под светильником и темно между опорами. Источник питания (драйвер) В драйвере нового поколения применен корректор коэффициента мощности, что позволяет более эффективно использовать энергию сети. В противном случае необходимо закладывать в проекты более мощные трансформаторные подстанции. Светодиодный источник питания – Драйвер имеет четырехступенчатую систему защиты от аномального напряжения сети и позволяет защитить светильник от бросков напряжения до 1000 Вольт (опционально):
Альтернативный источник энергии [править | править исходный текст] Основным направлением альтернативной энергетики является поиск и использование альтернативных (нетрадиционных) источников энергии. Источники энергии — «встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию»[1]. Альтернативный источник энергии являетсявозобновляемым ресурсом, он заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, вызывающий парниковый эффект и глобальное потепление. Причина поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность. Классификация источников [править | править исходный текст]
Ветроэнергетика [править | править исходный текст] В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их используют в странах Западной Европы (Дания, ФРГ,Великобритания, Нидерланды), в США, в Индии, Китае. Дания получает 25 % энергии из ветра[2] · Автономные ветрогенераторы · Ветрогенераторы, работающие параллельно с сетью Биотопливо [править | править исходный текст] · Жидкое: Биодизель, биоэтанол. · Твёрдое: древесные отходы и биомасса (щепа, гранулы (топливные пеллеты) из древесины, лузги, соломы и т. п., топливные брикеты) · Газообразное: биогаз, синтез-газ. Гелиоэнергетика [править | править исходный текст] Солнечные электростанции(СЭС) работают более чем в 80 странах. · Солнечный коллектор, в том числе Солнечный водонагреватель, используется как для нагрева воды для отопления, так и для производства электроэнергии. · Фотоэлектрические элементы Альтернативная гидроэнергетика [править | править исходный текст] · Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах — Франции, Великобритании, Канаде, России, Индии, Китае. · Волновые электростанции · Мини и микро ГЭС (устанавливаются в основном на малых реках) · Водопадные электростанции · Аэро ГЭС[3][4] (конденсация/сбор водяного пара из атмосферы и гидравлический напор 2-3 км) Геотермальная энергетика [править | править исходный текст] Используется как для нагрева воды для отопления, так и для производства электроэнергии. На геотермальных электростанцияхвырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления. · Тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле) · Грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена) Мускульная сила человека [править | править исходный текст] Хотя мускульная сила является самым древним источником энергии, и человек всегда стремился заменить её чем-то другим, в настоящее время её значение растёт вместе с ростом использования велосипеда. Грозовая энергетика [править | править исходный текст] Грозовая энергетика — это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings 11 октября 2006 года объявила о создании прототипа модели, которая может использовать энергию молнии. Предполагалось, что эта энергия окажется значительно дешевле энергии, полученной с помощью современных источников, окупаться такая установка будет за 4—7 лет.[5][6] Управляемый термоядерный синтез [править | править исходный текст] Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер. До сих пор не применяется. Солнечная батарея — несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток. В отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя, солнечная батарея производит непосредственноэлектричество. Однако для производства электричества из солнечной энергии используются и солнечные коллекторы: собранную тепловую энергию можно использовать и для вырабатывания электричества. Крупные солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и др. машин (паровой, газотурбинной, термоэлектрической и др.), называются Гелиоэлектростанции (ГЕЭС). Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается быстрыми темпами в самых разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий. Микроэлектроника[править | править исходный текст] Зарядное устройство Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п. Электромобили[править | править исходный текст] На крыше автомобиля Prius, 2008 Для подзарядки электромобилей. Электромобиль — автомобиль, приводимый в движение одним или несколькими электродвигателями с питанием от автономного источника электроэнергии (аккумуляторов, топливных элементов и т. п.), а не двигателем внутреннего сгорания. Электромобиль следует отличать от автомобилей с двигателем внутреннего сгорания и электрической передачей, а также от троллейбусов и трамваев Энергообеспечение зданий[править | править исходный текст] Солнечные батареи на крыше коровника кибуца Гезер (Израиль) Солнечная батарея на крыше дома Солнечные батареи крупного размера, как и солнечные коллекторы, очень широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов. Новые дома Испании с марта 2007 года оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование [1]. В Нидерландах запущен проект по созданию оконного стекла «Smart Energy Glass» с функциональностью фотоэлемента Date: 2015-07-22; view: 501; Нарушение авторских прав |