Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Оценка энергии атомов в основном состоянии





Многоэлектронные атомы. Заполнение электронных оболочек

Конспект лекции (с демонстрациями)

Аннотация: Оценка энергии и размера атомов. Распределение электронов в атоме по возможным квантовым состояниям (с дополнением демонстрацией на компьютерной модели).

Оценка энергии атомов в основном состоянии

Начнем с оценки энергии атома гелия (Физика за рубежом. 1988. Серия Б (преподавание): Сборник статей. М.:Мир, 1988, стр.130), основанной на использовании соотношения неопределенности Гейзенберга. В атоме гелия имеется два электрона с антипараллельными спинами. Их будем рассматривать как сферическое электронное облако со средним радиусом R. Минимальную кинетическую энергию электрона T, находящегося в объеме с линейным размером R оценим по формуле

Полная энергия атома складывается из энергии притяжения электронов к ядру (знак минус), энергии отталкивания электронов друг от друга и кинетической энергии электронов

где определим, что 1/R - среднее значение величины, обратной расстоянию электронов от ядра и 1/r12 - среднее значение величины, обратной расстоянию между электронами. Положим

причем β будет меньше единицы, т.к. r12 больше среднего расстояния электронов от ядра R. Запишем выражение (1) в виде

где A = (4 - β)e2, B = 2h2/4π2m, и найдем значение R, при котором энергия минимальна (приравняв производную от E по R нулю). Это значение R = B/A. Теперь имеем для основного состояния

Осталось определить значение β = R/r12. Обе величины R и r12 определяются плотностью распределения электронов в пространстве p(r). Радиус R найдем интегрированием R-1 = 4π∫(p(r)/r)r2dr, а r12 через распределение потенциала U(r), создаваемое распределением заряда ep(r). Тогда

Простейший случай - прямоугольное распределение заряда (рисунок справа). Несложные вычисления дают значение β = 0.8. Для экспоненциального распределения p(r) ~ exp(r/b) величина β = 5/8.

Подстановка β = 0.8 в выражение (2) дает E = -5.1·13.6 эВ, для β = 5/8 получаем E = -5.7·13.6 эВ. Точный расчет энергии, необходимой для удаления обоих электронов атома гелия, дает E = -5.81·13.6 = 79.0 эВ. Удивительно: проведена грубая оценка, а получен такой близкий к точному результат. Энергия связи электрона в ионе гелия He+ равна 4·13.6 эВ, следовательно, энергия ионизации атома 24.6 эВ.

Таким же методом можно сделать оценки и для атомов с большим числом электронов Z. Есть одна тонкость в этом случае, связанная с принципом Паули: в атоме может быть только один электрон с данным набором квантовых чисел. Разделим весь объем атома на ячейки с линейным размером r0, которую могут занимать два электрона с антипараллельными спинами. Потребуется Z/2 таких ячеек, так что (Z/2)r03 = R3. И оценивать минимальную кинетическую энергию электрона с помощью соотношения неопределенности будем, полагая что электрон движется в объеме с линейным размером r0

Если Z >> 1 выражение (1) следует заменить на

Здесь первое слагаемое - энергия притяжения Z электронов к ядру, второе - энергия отталкивания (Z-1)Z/2 электронных пар (попрежнему R/β - среднее расстояние между электронами), третье - оценка суммарной кинетической энергии всех электронов. Заменив Z(Z-1) на Z2, получим

Значение R, при котором энергия минимальна, и минимальное значение энергии равны, соответственно,

В этих формулах rБ - боровский радиус, равный 0.53·10-10 м. Для определения β задаемся распределением электронной плотности

Множитель 1/rn обеспечит правильное поведение распределения у ядра, экспонента - убывание плотности при удалении от ядра. Постоянные A, n и b определяются из условий: нормировки (всего имеется Z электронов), того, что на K-оболочке (n = 1) находится два электрона, и равенства среднего < r-1 > = R-1. Итог вычислений - β = 1 - 2/π = 0.36. Подставив это значение в (3), получаем среднее расстояние электронов от ядра R и среднюю энергию связи электрона в атоме E/Z.

Cреднее расстояние электронов от ядра R меньше размера атома Rа, так как большинство электронов находится на внутренних оболочках. Размер атома Rа можно оценить, используя распределение электронной плотности p(r) и, оказывается, что он слабо зависит от Z, что показывают данные таблицы:

Z Rа/rБ
  2.49
  2.33
  2.13

Бóльший заряд ядра приводит к слабому уменьшению размера атома и увеличению энергии связи электронов.

Date: 2015-07-22; view: 1381; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию