Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Преобразование формулы для приливообразующего потенциала
Вернемся к формуле (6.10). Здесь аргументом полиномов Лежандра является геоцентрическое зенитное расстояние притягивающего небесного тела . Рассмотрим треугольник OPL. Сторона ОР, как мы знаем, равна радиусу Земного шара (если точка P находится на поверхности земного шара), сторона OL равна расстоянию между центрами масс притягивающего и притягиваемого тела , угол между этими сторонами равен геоцентрическому зенитному расстоянию , угол между сторонами PL и продолжением стороны ОР равен зенитному расстоянию z. Проекция стороны OL на продолжение стороны ОР равна . Отсюда Можно ли заменить геоцентрическое зенитное расстояние топоцентрическим, которое используется в астрономии? Какую ошибку мы сделаем, если заменим в формуле (6.8) угол зенитным расстоянием ? Очевидно, что мы должны оценить величину Пусть отношение является малой величиной, тогда следовательно . Эта величина максимальна при . Так если гравитирующее тело -- Луна, то =6.371/384.4=0.0166. Следовательно, максимальное искажение зенитного расстояния в системе Земля-Луна не превосходит 1,7%. Для большинства задач этим отличием можно пренебречь и в качестве приливообразующего потенциала брать
Понятно, что наибольший вклад в приливные явления создает первый член формулы (6.10). Очень часто им и ограничиваются, хотя при строгом анализе приливных явлений приходится учитывать и остальные члены разложения (6.10). Итак, приливообразующий потенциал с точностью до имеет вид
Выполним некоторые преобразования полученной формулы и приведем к общепринятому виду. Поскольку , то подставляя это выражение в формулу (6.11) осле несложных преобразований, получим
Величина называется постоянной Дудсона. Теперь вместо (6.12) можно записать
Заметим, что так называемая постоянная Дудсона вовсе не является, постоянной величиной, так как расстояние между притягивающим и притягиваемым телами изменяются из-за того что они движутся по орбитам, строго говоря, не эллиптическим, подчиняясь законам небесной механики. В книге бельгийского ученого П. Мельхиора известного специалиста по приливам приводятся численные значения постоянных Дудсона:
Date: 2015-07-25; view: 503; Нарушение авторских прав |