Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Теоретичні відомості. Термічна обробка - це технологічний процес теплової обробки металів і сплавів, у результаті якого змінюються їх будова та влас­тивості





Термічна обробка - це технологічний процес теплової обробки металів і сплавів, у результаті якого змінюються їх будова та влас­тивості. За допомогою термічної обробки можна отримати як підвищені твердість і міцність, так і високі пластичність і в’язкість. Терміч­ній обробці можуть піддаватись усі без винятку метали та сплави. Значна роль у розвитку термообробки належить Д.К. Чернову, який впер­ше встановив, що властивості сталі залежать від її структури, яка визначається температурою нагрівання та швидкістю охолодження.

Основні фактори, що визначають режим термічної обробки, – тем­пература нагрівання, тривалість витримки та швидкість охолодження.

Як приклад розглянемо перетворення, що відбуваються в евтектоїдній сталі при її нагріванні й охолоджуванні з різною швидкістю. Нагрівання сталі вище точки S призведе до утворення з перліту структури аустеніту. Відомо, що при повільному охолодженні сталі після її нагрівання вище критичної точки А1 (727 ºС) відбувається розпад аустеніту на ферито-цементитну суміш, що називається перлітом. Це перетворення складається з двох процесів, які відбуваються одночасно: переходу Feγ уFeα і утворення карбіду заліза Fe3C (цементит).

Перший процес (алотропне перетворення заліза) бездифузійний і тому протікає миттєво.

Другий процес (утворення цементиту) дифузійний, пов’язаний з виходом атомів вуглецю з твердого розчину. Отже, для його завер­шення необхідно витратити певний час. Тому при швидкому охолоджен­ні в точці перлітних перетворень частинки цементиту не встигають сформуватись і ця точка переміщується в бік більш низьких темпе­ратур. При цьому чим швидше охолоджується сталь, тим при нижчій тем­пературі закінчується процес розпаду аустеніту на ферито-цементитну суміш (таблиця 6.1).

 

Таблиця 6.1 – Температурна поведінка розпаду аустеніту

Швидкість охолоджування, ºС/с Температура закінчення розпаду, °С Ступінь переохолод­ження аустеніту, °С
1/60    

Ферито - цементитні суміші, утворені при різних швидкостях охолоджування, відрізняються розмірами зерна, тобто ступенем дис­персності, а отже, своїми механічними властивостями.

 

Ферито - цементитні суміші, утворені при швидкостях охолоджуван­ня до 50 ºС/ с, називаються перлітом. Його твердість – НВ2000 МПа.

Ферито - цементитні суміші, утворені при швидкостях охолоджу­вання 50-100 ºС/ с, мають дрібне зерно і називаються сорбітом. Твердість сорбіту – HB5500 МПа.

Ферито - цементитні суміші, утворені при швидкостях охолоджу­вання 100-150 ºС/ с, мають дуже дрібне зерно і називаються троости­том. Твердість трооститу – HB3500 МПа.

При швидкості охолоджування вище 150 ºС/с аустеніт не буде
розпадатись на ферито – цементитну суміш. Він охолоджується до температури приблизно 240 ºС, а потім перетворюються в мартенсит, який є перенасиченим твердим розчином впровадження вуглецю в Feα .

 

Присутність вуглецю в α-залізі, де йому бракує місця в кристалічній решітці (ОЦК), призводить до різкої зміни її розмірів і форми, до викривлень. Тому мартенсит має підвищену твердість (НВ6000 МПа) та крихкість. Він є нестійкою структурою і при нагріванні розпада­ється на ферито - цементитну суміш, яка є трооститом і послідовно переходить при подальшому нагріванні у сорбіт і перліт.

Описані перетворення використовують на практиці, отримуючи шляхом нагрівання та охолодження з різною швидкістю потрібні структуру та властивості сталі. Так, нагріваючи евтектоїдну сталь до стану аустеніту та повільно охолоджуючи її, отримують найбільш мяку структуру (перліт). Це можуть бути такі операції термо­обробки, як відпалювання та нормалізація.

Охолоджуючи нагріту до стану аустеніту евтектоїдну сталь зі швидкістю більше 150 ºС/ с, отримують структуру мартенситу. Ця опе­рація термообробки називається гартуванням. Проте після неї сталь використовувати неможливо – вона занадто крихка і має низьку міц­ність. Нагріванням цієї сталі до певних температур (не вище критич­ної) її необхідно привести до більш стійкого стану. Ця операція термообробки називається відпусканням. Таким чином, мета відпускання – отримати бажану структуру (троостит, сорбіт, перліт) та відповідно необхідні властивості сталі. При цьому знижуються її внутрішні напруги.

У процесі швидкого охолоджування сталі може також утворюватись структура, яка є незначно перенасиченим твердим розчином впроваджен­ня вуглецю в Feα у суміші з карбідами заліза і називається бейні­том. Таким чином, бейніт – проміжна структура між трооститом і мартен­ситом, що має високу твердість (НВ5000 МПа).


Перетворення в нагрітій до стану аустеніту сталі можна вивчити, переохолоджуючи її до різних температур і витримуючи при них. Резуль­татом таких експериментальних досліджень є побудовані так звані діагра­ми ізотермічного перетворення переохолодженого аустеніту, які встанов­люють стійкість, тобто тривалість існування переохолодженого, аусте­ніту залежно від температури. За цією діаграмою можна точно визначити, скільки часу переохолоджений до даної температури аустеніт залишає­ться нерозпадним, через який час розпадається та яка структура є про­дуктом цього розпаду. Та якщо діаграма залізо - цементит є єдиною для всіх сплавів, то діаграма ізотермічного перетворення переохолоджено­го аустеніту будується для кожної марки сталі. Для теорії та практики термічної обробки необхідні дві діаграми. Якщо за допомогою діаграми стану Fe - Fe3C встановлюють температуру нагрівання сталі при від­палюванні, нормалізації, загартуванні, то діаграма ізотермічного перетворення переохолодженого аустеніту дає можливість вибрати швид­кість охолодження для отримання необхідної структури та властивостей сталі. Це легко визначити, накладаючи на діаграму криві охолодження сталі.

Отже, основними операціями термообробки сталі є відпалювання, нормалізація, загартування та відпускання.

Відпалюванням (відпалом) називається операція термообробки, що полягає в нагріванні сталі до певної температури, витримці при цій темпера­турі та повільному охолоджуванні разом з піччю. Відпалювання здійс­нюють для зниження твердості, збільшення пластичності та в’язкості і покращення оброблюваності сталі. На практиці, як правило, застосовуються такі види відпалювання.

Відпал 1-го роду без фазових перетворень застосовується для мономорфних та поліморфних металів і сплавів. Відрізняють такі, різновиди відпалу 1 роду: гомогенізуючий, рекристалізаційний та для зняття напружень.

Гомогенізуюче (дифузійне) відпалювання дає можливість усуну­ти дендритну ліквацію у виливках і зливках сплавів кольорових мета­лів і високолегованих сталей. Із зростанням температури збільшується також швидкість дифузії. Тому це відпалювання виконують за високих температур – нагрівають до 1000-1200 ºС, витримують 8-15 годин при цій температурі, потім повільно охолоджують до температури 500-600 ºС після цього, охолодження відбувається з будь-якою швидкістю.

Рекристалізаційний відпал найчастіше застосовується для холоднодеформованих металів і сплавів, щоб зняти наклеп. Ця оброб­ка може бути проміжною та остаточною. У результаті рекристалізації утворюються нові зерна з меншою концентрацією дефектів будови, зніма­ються внутрішні напруження, знижуються міцності та підвищуються пластич­ні властивості металів і сплавів. Температура відпалювання для вуг­лецевих сталей – 680-700 °С, для легованих – 700 - 730 ºС. Тривалість витримки залежить від товщини перерізу виробу, що оброблюється.

Відпал для зняття напружень дає можливість усунути внутріш­ні (залишкові) напруження, внесені до металу попередньою обробкою. Це відпалювання найчастіше здійснюється за температур 400-680 ºС, тривалість витримки – з розрахунку 2,5 хв. на 1 мм товщини перерізу деталі.


Відпал 2-го роду (з фазовою перекристалізацією) виконує­ться для отримання рівноважної структури металів і сплавів, що заз­нають при тепловому впливанні фазових перетворень. Таке відпалюван­ня зменшує концентрацію дефектів решітки, знижує внутрішні напру­ження, подрібнює зерно, виправляє структуру, створену попередньою обробкою. У результаті підвищується пластичність і знижуються міц­ність і твердість металу.

Нормалізація, як різновид повного відпалу застосовується все ширше завдяки значному скороченню часу на термообробку, оскільки охолоджування відбувається на повітрі. Вона застосовується як заключна операція для низьковуглецевих і легованих сталей. Для за­евтектоїдних сталей нормалізація є допоміжною операцією перед гар­туванням.

Загартування здійснюється для підвищення твердості, зносостій­кості та межі пружності. При гартуванні сталь нагрівають вище кри­тичних точок, витримують, а потім швидко охолоджують. Залежно від швидкості охолодження відрізняють різке загартування на мартенси т і помірне – на троостит. Для загартування вуглецевих ста­лей на мартенсит застосовують охолодження у воді, на троостит – у мінеральному маслі. Температура під загартування має бути такою, щоб сталь повністю перейшла до аустенітного стану (рисунок 6.1).

 

Рисунок 6.1 - Інтервал оптимальних температур для гартування сталей

 

Для доевтектоїдної сталі температура нагрівання має бути на 30-50 ºС вища лінії, для заевтектоїдної – на 30-50 ºС вище лінії, оскільки вторинний цементит, що зали­шився при такому нагріванні, підвищує твердість і зносостійкість за­гартованої сталі.

Пересичені тверді розчини, що утворюються в результаті загар­тування, метастабільні і при нагріванні починають розпадатись. Про­цеси їх розпаду в сплавах, загартованих з поліморфним перетво-ренням, називаються відпуском (відпусканням), а в сплавах, загартованих для поліморфно­го перетворення, – старінням.

Відпускання призначене для часткового чи повного зменшення метастабільності загартованого на мартенсит матеріалу. Температура нагрівання при відпусканні має не перевищува­ти температуру фазового переходу. Відпускання залежно від темпера­тури нагрівання буває низьким (150-300 ºС), середнім (300-500 ºС) і високим (500-650 ºС) і тією чи іншою мірою зменшує внутрішні напруження та хрупкість, знижує твердість і міцність, підвищує плас­тичність і в’язкість.

Крім звичайної термічної обробки для підвищення механічних властивостей сталі інколи піддають термомеханічній обробці, яка полягає у нагріванні до температури вище критичних точок, витримка, пластична деформація при високій температурі і наступне охолодження з метою одержання особливої мартенситної структури.


Одним з ефективних способів поверхневого зміцнення металів є хіміко-термічна обробка. Вона представляє собою технологічний процес насичення поверхневого шару виробу яким-небудь елементом шляхом дифузії його із зовнішнього середовища.При хіміко-термічній обробці змінюється хімічний склад поверхневого шару деталей.

Механізм насичення металу полягає в адсорбції атомів, що підводяться до виробу; розчиненні адсорбованих атомів в металі; дифузії розчиненої речовини в глибину оброблюваного виробу.

Хіміко-термічна обробка (ХТО) здійснюється при високих температурах, для збільшення швидкості дифузії елементів насичення.

До найбільш розповсюджених методів ХТО відносяться цементація, азотування, ціанування, дифузійна металізація.

Цементація – процес насичення поверхневого шару сталі вуглецем.

Цементації піддаються низьковуглецеві сталі (0,1...0,3 % С). В тому числі і леговані. Цементацію здійснюють твердим карбю-ризатором (деревним вугіллям з додаванням ВаСО3, NaCO3, К2СО3) при температурі 900...950 оС в металевих ящиках протягом 8...14 год. Газова цементація здійснюється в закритих камерних печах, заповнених газом (природним, окислом вуглецю, метаном, пропаном та ін.), при температурі 930...950 оС протягом 8...12 год.

Азотування – процес дифузійного насичення поверхні виробу азотом. Азотують леговані сталі (35ХМЮА, 35ХЮА і ін.). Перед азотуванням заготовку піддають загартуванню та високому відпус-канню. Азотування проводять в печах при температурі 500...600 оС. Активний азот, що виділяється при дисоціації аміаку, шляхом дифузії проникає з іншими елементами в поверхневий шар і утворює дуже тверді хімічні сполуки – нітриди (AlN, MoN, Fe3N та ін.).

Азотування на глибину 0,2...0,5 мм продовжується 25...60 год і в цьому його основний недолік.

Ціанування – насичення поверхневого шару одночасно вуглецем і азотом; воно буває рідинним і газовим.

Дифузійна металізація – процес поверхневого насичення стальних деталей металами (алюмінієм, хромом і ін.) для підвищення жаростійкості, корозійної стійкості, твердості та зносостійкості.

Алітування – процес хіміко-термічної обробки; дифузійне насичення поверхневого шару сталі алюмінієм при нагріванні у відповідному твердому або рідкому середовищі.

Хромування – процес дифузійного насичення поверхневого шару сталі хромом при нагріванні у відповідному середовищі.

 







Date: 2015-07-25; view: 542; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.012 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию