Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Глава 2. Практическое применение регрессионного анализа в эконометрике





Задача 1
По территории региона приводятся данные за 2007 (табл. 2.1).

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., х Среднедневная заработная плата, руб., у
1 78 133
2 82 148
3 87 134
4 79 154
5 89 162
6 106 195
7 67 139
8 88 158
9 73 152
10 87 162
11 76 159
12 115 173


Решение: для расчета параметров уравнения линейной регрессии строим расчетную таблицу (табл. 2.2)

  х у Ху х2 у2
1 78 133 10374 6084 17689
2 82 148 12136 6724 21904
3 87 134 11658 7569 17956
4 79 154 12166 6241 23716
5 89 162 14418 7921 26244
6 106 195 20670 11236 38025
7 67 139 9313 4489 19321
8 88 158 13904 7744 24964
9 73 152 11096 5329 23104
10 87 162 14094 7569 26244
11 76 159 12084 5776 25281
12 115 173 19895 13225 29929
Итого 1027 1869 161808 89907 294377
Среднее значение 85,6 155,8 13484,0 7492,3 24531,4
σ 12,95 16,53 - - -
σ2 167,7 273,4 - - -

 

 


b=xy-y*x/∑x2-(x)2=(13484-85,6*155,8)/(7492,3-85,62)=151,8/164,94=0,92

a=y-b*x=155,8-0,92*85,6=77,0

Получено уравнение регрессии: у=77,0+0,92*х.

С увеличением среднедушевого прожиточного минимума на 1 рубль среднедневная заработная плата возрастает в среднем на 0,92 рубля.

Задача 2
По семи территориям Уральского района за 2008 г. Известны значения двух признаков (табл. 2.3).

Район Расходы на покупку продовольственных товаров в общих расходах, %, у Среднедневная заработная плата одного работающего, руб., х
Удмуртская республика 68,8 45,1
Свердловская область 61,2 59,0
Башкортостан 59,9 57,2
Челябинская область 56,7 61,8
Пермская область 55,0 58,8
Курганская область 54,3 47,2
Оренбургская область 49,3 55,2

 

Определить:

 

1.
Для характеристики зависимости у от х рассчитать параметры следующих функций:


А. линейной, ценить ее через F-критерий Фишера.

Б. степенной

Решение:

1.А. Для расчета параметров а и b линейной регрессии ŷx=а+b*x решаем систему нормальных уравнений относительно а и b:

n*a+b∑x=∑y,

a∑x+b∑x2=∑y*x.

По исходным данным рассчитываем: ∑x, ∑y, ∑x2, ∑y*x, ∑y2. (Табл. 2.4)

b= yx-y*x/ σx2=(3166,05-57,89*54,9)/(5,86)2=-0,35;

a=y-b*x=57,89+0,35*54,9=76,88.

Уравнение регрессии: ŷ=76,8-0,35*х

 

1 68,8 45,1 3102,88 2034,01 4733,44
2 61,2 59,0 3610,80 3481,00 3745,44
3 59,9 57,2 3426,28 3271,84 3588,01
4 56,7 61,8 3504,06 3819,24 3214,89
5 55,0 58,8 3234,00 3457,44 3025,00
6 54,3 47,2 2562,96 2227,84 2948,49
7 49,3 55,2 2721,36 3047,04 2430,49
Итого 405,2 384,3 22162,34 21338,41 23685,76
Среднее значение 57,89 54,90 3166,05 3048,34 3383,68
σ 5,74 5,89 - - -
σ2 32,92 34,34 - - -

 

С увеличением среднедневной заработной платы на 1 рубль доля расходов на покупку продовольственных товаров снижается в среднем на 0,35%-ных пункта.

Рассчитаем линейный коэффициент парной корреляции:

rxy=b*σxy=-0,35*5,86/5,74=-0,357.

Связь умеренная, обратная.

Определим коэффициент детерминации:

r2xy=(-0,35)2=0,127.

Вариация результата на 12,7% объясняется вариацией фактора х.

 

 


Рассчитаем F-критерий:

Fфакт= r2xy*(n-2)/(1- r2xy)=0,127*5/0,873=0,7.

Поскольку 1≤F≤∞, следует рассмотреть F-1.

Полученное значение указывает на необходимость принять гипотезу Н0 о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.

1.Б. построению степенной модели ŷx=а*xb предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

lg y=lg a + b*lg x;

Y = C + b*X, где

Y = lg y, X = lg x, С = lg a.

Для расчетов построим таблицу (табл. 2.5)

 

 

  х у Х У Х*У Х2 У2
1 68,8 45,1 1,6542 1,8376 3,0398 2,7364 3,3768
2 61,2 59,0 1,7709 1,7868 3,1642 3,1361 3,1927
3 59,9 57,2 1,7574 1,7774 3,1236 3,0885 3,1592
4 56,7 61,8 1,7910 1,7536 3,1407 3,2077 3,0751
5 55,0 58,8 1,7694 1,7404 3,0795 3,1308 3,0290
6 54,3 47,2 1,6739 1,7348 2,9039 2,8019 3,0095
7 49,3 55,2 1,7419 1,6928 2,9487 3,0342 2,8656
Итого 405,2 384,3 12,1587 12,3234 21,4003 21,1355 21,7078
Среднее значение 57,89 54,90 1,7370 1,7605 3,0572 3,0194 3,1011
σ2 32,92 34,34 0,0023 0,0018 - - -

 


 

Рассчитаем С и b:

b=(YX-Y*X)/ σ2X=3,0572-1,7605*1,7370/0,04842=-0,298;

C=Y-b*X=1,7605+0,298*1,7370=2,278.

Получим линейное уравнение: Ŷ=2,278-0,298*Х.

Выполнив его потенцирование, получим:

ŷ=102,278-0,298=189,7* х-0,298.


Задача 3

Руководство предприятия заметило, что годовой товарооборот зависит не только от торговой площади магазина (см. пример 2.1), но и от среднего числа посетителей. Соответствующая информация представлена в табл. 2.3.

Таблица 2.3

Номер магазина Среднее число посетителей в день, тыс. чел.
  8,25
  10,24
  9,31
  11,01
  8,54
  7,51
  12,36
  10,81
  9,89
  13,72
  12,27
  13,92

Решение. Обозначим — среднее число посетителей -го магазина в день, тыс. чел.

Для определения формы функциональной зависимости между переменными и построим диаграмму рассеяния (рис. 2.2).

На основании диаграммы рассеяния можно сделать вывод о позитивной зависимости годового товарооборота от среднего числа посетителей в день (т.е. у будет расти с ростом ). Форма функциональной зависимости — линейная.

Рис. 2.2. Диаграмма рассеяния для примера 2.2

Таблица 2.4

t x2t x2t 2 yt x2t x1t x2t
         
  8,25 68,0625 163,02 1,98
  10,24 104,8575 390,0416 3,1744
  9,31 86,6761 381,2445 5,1205
  11,01 121,2201 452,2908 5,2848
  8,54 72,9316 480,7166 6,6612
  7,51 56,4001 514,5101 7,3598
  12,36 152,7696 927,1236 11,6184
  10,81 116,8561 962,6305 13,0801
  9,89 97,8121 901,2757 12,7581
  13,72 188,2384 1252,0872 15,3664
  12,27 150,5529 1225,0368 15,8283
  13,92 193,7664 1511,016 20,7408
S 127,83 1410,44 9160,9934 118,9728
Cреднее 10,65      

В целом необходимо определить параметры двухфакторной эконометрической модели

уt= a0+ a1х1t+ a2х2t+ εt

Информация, требующаяся для дальнейших расчетов, представлена в табл. 2.4.

Оценим параметры линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов.

Таким образом,

Оценка коэффициента =61,6583 показывает, что при прочих равных условиях с увеличением торговой площади на 1 тыс. м2 годовой товарооборот увеличится в среднем на 61,6583 млн руб.

Оценка коэффициента = 2,2748 показывает, что при прочих равных условиях с увеличением среднего числа посетителей на 1 тыс. чел. в день годовой товарооборот увеличится в среднем на 2,2748 млн руб.


 


Выводы:

В практических исследованиях возникает необходимость аппроксимировать (описать приблизительно) зависимость между переменными величинами у и х. Ее можно выразить аналитически с помощью формул и уравнений и графически в виде геометрического места точек в системе прямоугольных координат. Для выражения регрессии служат эмпирические и теоретические ряды, их графики — линии регрессии, а также корреляционные уравнения (уравнения регрессии) и коэффициент линейной регрессии.

Показатели регрессии выражают корреляционную связь двусторонне, учитывая изменение средней величины признака у при изменении значений xi признака х, и, наоборот, показывают изменение средней величины признака х по измененным значениям yi признака у.

Форма связи между показателями может быть разнообразной. И поэтому задача состоит в том, чтобы любую форму корреляционной связи выразить уравнением определенной функции (линейной, параболической и т.д.), что позволяет получать нужную информацию о корреляции между переменными величинами у и х, предвидеть возможные изменения признака у на основе известных изменений х, связанного с у корреляционно.
Заключение:

В настоящее время регрессионный анализ используется как в естественнонаучных исследованиях, так и в обществоведении.

В практических исследованиях возникает необходимость аппроксимировать (описать приблизительно) зависимость между переменными величинами у и х. Ее можно выразить аналитически с помощью формул и уравнений и графически в виде геометрического места точек в системе прямоугольных координат. Для выражения регрессии служат эмпирические и теоретические ряды, их графики — линии регрессии, а также корреляционные уравнения (уравнения регрессии) и коэффициент линейной регрессии.

Показатели регрессии выражают корреляционную связь двусторонне, учитывая изменение средней величины признака у при изменении значений xi признака х, и, наоборот, показывают изменение средней величины признака х по измененным значениям yi признака у.

Форма связи между показателями может быть разнообразной. И поэтому задача состоит в том, чтобы любую форму корреляционной связи выразить уравнением определенной функции (линейной, параболической и т.д.), что позволяет получать нужную информацию о корреляции между переменными величинами у и х, предвидеть возможные изменения признака у на основе известных изменений х, связанного с у корреляционно.

Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна.

Практически, речь идет о том, чтобы, анализируя множество точек на графике (т.е. множество статистических данных), найти линию, по возможности точно отражающую заключенную в этом множестве закономерность (тренд, тенденцию), линию регрессии.


Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значений зависимой переменной.

Решение задач основывается на анализе соответствующих параметров (статистических данных) в которых всегда неизбежно присутствуют отклонения, вызванные случайными ошибками. Поэтому существуют специальные методы оценки как уравнения регрессии в целом, так и отдельных ее параметров.

Построение линейной регрессии сводится к оценке ее параметров – a и b. Оценки параметров линейной регрессии могут быть найдены разными методами. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов

В прогнозных расчетах по уравнению регрессии путем подстановки в него соответствующего значения х определяется предсказываемое значение. Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки ŷx, то есть mŷx, и соответственно интервальной оценкой прогнозного значения (у*).

После того как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров. Оценка значимости уравнения регрессии в целом дается с помощью F-критерия Фишера.







Date: 2015-07-25; view: 620; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.02 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию