Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Уравнения линии с распределенными параметрами
Напряжения и ток в линии являются функциями двух независимых переменных – пространственной координаты x, определяющей место наблюдения, и времени t, определяющей момент наблюдения. Считается, что направление координаты x совпадает с осью линии. Необходимо найти пространственно-временное распределение величины тока в линии i (x, t) и напряжения между проводами u (x, t). В этом случае также можно определить процесс передачи энергии по линии, когда приемники и источники находятся на обоих концах линии. Приняв положительное направление тока в линии слева направо, условимся называть "началом" левый конец линии. Расстояние от начальной точки до произвольной обозначим через x, а от конца – через x '. Вся длина линии l = x + x '. Выделим элементарный участок D x на расстоянии x от начала. Пользуясь первичными параметрами R 0, L 0, C 0, G 0, отнесенными к единице длины линии, представим приближенно участок D x в виде схемы замещения (рис. 13.1).
Обозначим: u – напряжение между верхним и нижним проводом в точке x; D u – приращение напряжения на участке D x; i – ток в точке x; D i – приращение тока на участке D x. Уравнения для приращений напряжения и тока на элементе D x линии запишутся: (13.1) Это уравнение в частных производных. По мере стремления D x к нулю степень точности этих уравнений повышается, причем величина второго порядка малости в правой части второго уравнения может быть опущена. В этом случае длинная линия рассматривается как цепная схема с бесконечно большим количеством звеньев, электрические параметры которых бесконечно малы. Разделив обе части уравнений на D x и перейдя к пределу D x ® 0, получим дифференциальные уравнения линии (13.2) Эти уравнения носят название телеграфных. Если за начало отсчета принять конец линии, т.е. ввести координату x ', уравнения примут вид: (13.3) Уравнения (13.2) и (13.3) решаются однозначно при использовании начальных и граничных условий. Начальными условиями будут служить значения напряжения и тока в начале и конце линии в момент времени, принятый за нуль. Граничные условия определяются связями между напряжением и током в начале или в конце линии и зависят от заданного режима работы линии.
Date: 2015-07-24; view: 332; Нарушение авторских прав |