Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Основные направления исследования эволюции систем
При исследовании эволюции системы необходима ее декомпозиция на подсистемы с целью обеспечения: · эффективного взаимодействия с окружением; · оптимального обмена определяющими материальными, энергетическими, информационными, организационными ресурсами с подсистемами; · эволюции системы в условиях динамической смены и переупорядочивания целей, структурной активности и сложности системы; · управляемости системы, идентификации управляющей подсистемы и эффективных связей с подсистемами, обратной связи. Пусть имеется некоторая система S с N подсистемами. Для каждой i - й подсистемы определим вектор x(i) = (x1(i), x2(i),…,xni(i)) основных параметров, без которых нельзя описать и изучить функционирование подсистемы в соответствии с целями и доступными ресурсами системы. Введем в рассмотрение функцию s(i) = s(x(i)), которую назовем функцией активности или просто активностью этой подсистемы. Например, в бизнес-процессах это понятие близко к понятию деловой активности. Для всей системы определены вектор состояния системы x и активность системы s(x), а также понятие общего потенциала системы. Например, потенциал активности может быть определен с помощью интеграла от активности на задаваемом временном промежутке моделирования. Эти функции отражают интенсивность процессов, как в подсистемах, так и в системе в целом. Важными для задач моделирования являются три значения s(i)max, s(i)min, s(i)opt - максимальные, минимальные и оптимальные значения активности i - й подсистемы, а также аналогичные значения для всей системы (smax, smin, sopt). Если дана открытая экономическая система (процесс), а Н0, Н1 - энтропия системы в начальном и конечном состояниях процесса, то мера информации определяется как разность вида: ΔН = Н0 - Н1. Уменьшение ΔН свидетельствует о приближении системы к состоянию статического равновесия (при доступных ресурсах), а увеличение - об удалении. Величина ΔН - количество информации, необходимой для перехода от одного уровня организации системы к другой (при ΔН > 0 - более высокой, при ΔН < 0 - более низкой организации). Рассмотрим подход и с использованием меры по Н. Моисееву. Пусть дана некоторая управляемая система, о состояниях которой известны лишь некоторые оценки - нижняя smin и верхняя smax. Известна целевая функция управления F(s(t), u(t)), где s(t) - состояние системы в момент времени t, а u(t) - управление из некоторого множества допустимых управлений, причем считаем, что достижимо uopt - некоторое оптимальное управление в пространстве U, t0 < t < T, smin s smax. Мера успешности принятия решения может быть выражена математически: H = |(Fmax - Fmin) / (Fmax + Fmin)|, Fmax = max F(uopt, smax), Fmin = min F(uopt, smin), t [t0;T ], s [smin; smax]. Увеличение Н свидетельствует об успешности управления системой.
Функции должны отражать эволюцию системы, в частности, удовлетворять условиям: 1. Периодичности (цикличности), например: ( 0 < T < ∞, t: (i)(s; s(i), t) = (i)(s; s(i), t + T), (i)(s; s(i), t) = (i)(s; s(i), t + T)). 2. Затуханию при снижении активности, например: (s(x) 0 i = 1, 2,..., n) => ( (i) 0, (i) 0). 3. Стационарности: выбор или определение функции (i), (i) осуществляется таким образом, чтобы система имела точки равновесного состояния, а s(i)opt, sopt достигались бы в стационарных точках x(i)opt, xopt для малых промежутков времени. В больших промежутках времени система может вести себя хаотично, самопроизвольно порождая регулярные, упорядоченные, циклические взаимодействия (детерминированный хаос). Взаимные активности (ij)(s; s(i), s(j), t) подсистем i и j не учитываются. В качестве функции (i), (i) могут быть эффективно использованы производственные функции типа Кобба - Дугласа:
В таких функциях важен параметр i, отражающий степень саморегуляции, адаптации системы. Как правило, его нужно идентифицировать. Функционирование системы удовлетворяет на каждом временном интервале (t; t + τ) ограничениям вида
При этом отметим, что выполнение для τ > 0 одного из двух условий
приводит к разрушению (катастрофе) системы. Обратимся к социально - экономической среде, которая может возобновлять с коэффициентом возобновления (τ, t, x) (0 < t <T, 0 < x < 1, 0 < τ < T) свои ресурсы. Этот коэффициент зависит, в общем случае, от мощности среды (ресурсоемкости и ресурсообеспеченности). Рассмотрим простую гипотезу: (τ, t, x) = 0 + 1x, Чем больше ресурсов - тем больше темп их возобновления. Запишем непрерывную эволюционную модель, где a - коэффициент естественного прироста ресурсов, b - убыли ресурсов:
Пусть (τ) = 0(τ) + 1(τ) x(τ) > 0. Тогда
Задача всегда имеет решение при x = 0. Тогда эволюционный потенциал системы можно определить как величину:
Чем выше темп возобновления - тем выше λ, чем меньше - тем ниже λ. Напрашивается вывод. Каким бы хорошим ни было состояние ресурсов в начальный момент, они неизменно будут истощаться, если потенциал системы меньше 1. Отметим, что если ds/dt - общее изменение энтропии системы, ds1/dt - изменение энтропии за счет необратимых изменений структуры, потоков внутри системы, ds2/dt - изменение энтропии за счет усилий по улучшению обстановки (например, экономической, экологической, социальной), то справедливо уравнение И. Пригожина: ds/dt = ds1/dt + ds2/dt. При эволюционном моделировании социально - экономических систем полезно использовать и классические математические модели и неклассические, в частности, учитывающие пространственную структуру системы, структуру и иерархию подсистем (графы, структуры данных и др.), опыт и интуицию (эвристические, экспертные процедуры). Пример. Пусть дана некоторая экологическая система Ω, в которой имеются точки загрязнения (выбросов загрязнителей) xi, i = 1, 2, …, n. Каждый загрязнитель xi загрязняет последовательно экосистему в промежутке времени [ti-1; ti]. Каждый загрязнитель может оказать воздействие на активность другого загрязнителя (например, уменьшить, нейтрализовать или усилить по известному эффекту суммирования воздействия загрязнителей). Силу (меру) такого влияния можно определить через rij, R = {rij: i = 1, 2,…, n-1; j = 2, 3,…, n}. Структура задаётся графом: вершины - загрязнители, ребра – меры загрязнения. Найдём подстановку, минимизирующую функционал вида: где F - суммарное загрязнение системы с данной структурой S. Чем быстрее будет произведен учёт загрязнения в точке xi, тем быстрее осуществимы социально - экономические мероприятия по его нейтрализации. Чем меньше будет загрязнителей до загрязнителя xi, тем меньше будет загрязнение среды. В качестве меры rij может быть взята мера, учитывающая как время начала воздействия загрязнителей, так и число, и интенсивность этих загрязнителей:
где vij - весовой коэффициент, определяющий степень влияния загрязнителя xi на загрязнитель xj (эффект суммирования), hj - весовой коэффициент, учитывающий удельную интенсивность действия загрязнителя xj и интервал τi, в течение которого уменьшается интенсивность (концентрация) загрязнителя. Весовые коэффициенты устанавливаются экспертно или экспериментально. Принцип эволюционного моделирования предполагает необходимость и эффективность использования методов и технологии искусственного интеллекта, в частности, экспертных систем. Адекватным средством реализации процедур эволюционного моделирования являются генетические алгоритмы.
Date: 2015-07-24; view: 399; Нарушение авторских прав |