Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Основы математического моделирования
Отметим основные операции математического моделирования. 1. Линеаризация. Пусть дана математическая модель
М=М(X, Y, A),
где X - множество входов, Y - множество выходов, А - множество состояний системы. Схематически можно это изобразить так:
X A Y.
Если X, Y, A - линейные пространства (множества), а и : X A, : A Y
- линейные операторы, которые любые линейные комбинации ax + by преобразуют в линейные комбинации типа a (x) + b (y), то система (модель) называется линейной. Все другие системы (модели) - нелинейные. Они труднее поддаются исследованию, хотя и более актуальны. Нелинейные модели менее изучены, поэтому их часто линеаризуют - сводят к линейным моделям. Например, применим операцию линеаризации по Тейлору в точке t0 = 2 к модели У(t) = at2/2, 0 t 4, которая является нелинейной (квадратичной). Такая процедура линеаризации дает уже линейную модель вида y = 2at - 2a. 2. Идентификация. Пусть модель системы в общем виде представлена следующим образом:
М = М(X, Y, A), A = {ai}, ai = (ai1, ai2,..., aik)
ai - вектор состояния объекта (системы). Если вектор ai зависит от некоторых неизвестных параметров, то задача идентификации состоит в определении модели или ее параметров по некоторым дополнительным условиям, например, экспериментальным данным, характеризующим состояние системы. Идентификация – это задача построения по результатам наблюдений математических моделей, адекватно описывающих поведение системы.
Пусть S={s1, s2,..., sn} - некоторая последовательность сообщений или данных, получаемых от источника информации о системе, М={m1, m2,..., mz} - последовательность моделей, описывающих S, среди которых, возможно, содержится оптимальная (в каком-то смысле) модель, то идентификация модели М означает, что последовательность S позволяет различать две разные модели в М. Цель идентификации - построение надежной, адекватной, эффективно функционирующей, гибкой модели на основе минимального объема информативной последовательности сообщений. Наиболее часто используемыми на практике методами идентификации систем являются: · метод наименьших квадратов, · метод максимального правдоподобия, · метод байесовских оценок, · метод марковских цепных оценок, · метод эвристик, · экспертное оценивание и др. Пример. Применим операцию идентификации параметра a в модели у=at2/2, 0 t 4. Решение. Для этого необходимо задать дополнительно значение y для некоторого t, например, y = 6 при t = 3. Тогда из модели получаем: 6 = 9a/2, a = 12/9 = 4/3. Идентифицированный параметр а определяет следующую модель y=2t2/3. Методы идентификации моделей могут быть несоизмеримо сложнее, чем приведенный прием. 3. Оценка адекватности (точности) модели. Пример. Оценим адекватность (точность) модели, полученной в результате линеаризации. В качестве меры (критерия) адекватности рассмотрим привычную меру - абсолютное значение разности между точным значением и значением, полученным по модели. Если эта величина не велика и приемлема, то делается вывод о точности и адекватности модели. Date: 2015-07-24; view: 410; Нарушение авторских прав |