Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Двойственная задача линейного програмирования





Двойственная задача линейного програмирования может быть сформулирована следующим образом:

Найти переменные y i (i=1,2,...m), при которых целевая функция была бы минимальной

,

не нарушая ограничений

Данная задача называется двойственной (симметричной) по отношению к прямой задаче, сформулированной выше. Однако, правильным будет и обратное утверждение, т.к. обе задачи равноправны. Переменные двойственной задачи называются объективно обусловленными оценками.

Прямая и обратная задачи линейного программирования связаны между собой теоремами двойственности.

Первая теорема двойственности. Если обе задачи имеют допустимые решения, то они имеют и оптимальное решение, причем значение целевых функций у них будет одинаково:

F(x)=Z(y) или .

Если же хотя бы одна из задач не имеет допустимого решения, то ни одна из них не имеет оптимального решения.

Вторая теорема двойственности (теорема о дополняющей нежесткости). Для того чтобы векторы были оптимальными решениями соответственно прямой и двойственной задачи, необходимо и достаточно, чтобы выполнялись следующие условия:

Следствие1. Пусть оптимальное значение некоторой переменной двойственной задачи строго положительно

.

Тогда из условия (1) получим:

или

Экономический смысл данных выражений можно интерпретировать в следующей редакции. Если объективно обусловленная оценка некоторого ресурса больше нуля (строго положительна), то этот ресурс полностью (без остатка) расходуется в процессе выполнения оптимального плана.

Следствие2. Пусть для оптимального значения некоторой переменной x i прямой задачи выполняется условие строгого неравенства

.

Тогда основываясь на том же первом условии (1) можно заключить, что yi =0.

Экономически это означает, что если в оптимальном плане какой-то ресурс используется не полностью, то его объективно обусловленная оценка обязательно равна нулю.

 







Date: 2015-07-24; view: 426; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию