Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Двойственная задача линейного програмирования
Двойственная задача линейного програмирования может быть сформулирована следующим образом: Найти переменные y i (i=1,2,...m), при которых целевая функция была бы минимальной , не нарушая ограничений Данная задача называется двойственной (симметричной) по отношению к прямой задаче, сформулированной выше. Однако, правильным будет и обратное утверждение, т.к. обе задачи равноправны. Переменные двойственной задачи называются объективно обусловленными оценками. Прямая и обратная задачи линейного программирования связаны между собой теоремами двойственности. Первая теорема двойственности. Если обе задачи имеют допустимые решения, то они имеют и оптимальное решение, причем значение целевых функций у них будет одинаково: F(x)=Z(y) или . Если же хотя бы одна из задач не имеет допустимого решения, то ни одна из них не имеет оптимального решения. Вторая теорема двойственности (теорема о дополняющей нежесткости). Для того чтобы векторы были оптимальными решениями соответственно прямой и двойственной задачи, необходимо и достаточно, чтобы выполнялись следующие условия: Следствие1. Пусть оптимальное значение некоторой переменной двойственной задачи строго положительно . Тогда из условия (1) получим: или Экономический смысл данных выражений можно интерпретировать в следующей редакции. Если объективно обусловленная оценка некоторого ресурса больше нуля (строго положительна), то этот ресурс полностью (без остатка) расходуется в процессе выполнения оптимального плана. Следствие2. Пусть для оптимального значения некоторой переменной x i прямой задачи выполняется условие строгого неравенства . Тогда основываясь на том же первом условии (1) можно заключить, что yi =0. Экономически это означает, что если в оптимальном плане какой-то ресурс используется не полностью, то его объективно обусловленная оценка обязательно равна нулю.
Date: 2015-07-24; view: 426; Нарушение авторских прав |