Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Тюнинг двигателя. Поршневая группа. Часть II⇐ ПредыдущаяСтр 16 из 16
Для начала неплохо бы представить, чего в принципе мы ожидаем от идеального поршня. Какой он, этот стойкий оловянный солдатик? Ну, конечно же, несгибаемый. Как бы мы его ни гнули, толкали, мяли, бросали из жара в холод, он всегда должен оставаться одинаковым. Одинаковым с большой точностью. Наш герой находится в плотном строю сопряженных с ним деталей. Это кольца, поршневой палец, цилиндр. Если механические нагрузки будут столь велики, что канавки деформируются и поршневые кольца потеряют подвижность, тогда работа мотора будет нарушена. Если поршневой палец окажется зажатым в отверстиях бобышек, скорее всего, поршень разрушится. Если зазор от стенок цилиндра вдруг станет большим, мы потеряем ориентацию, а если маленьким – размажем поршень по стенкам. А силы действуют на него немалые. Максимальное давление в камере сгорания у высокофорсированных моторов достигает величины 100 атмосфер. Усилие, с которым поршень толкают газы, измеряется тоннами. Максимальная скорость, с которой он перемещается в быстроходном моторе, достигает 120 км/час. При этом 200 раз в секунду тормозится до полной остановки. Представьте себе, что ваш автомобиль со скорости 120 км/час остановился на пути в 4 сантиметра. Это почти удар о скалу. Что же представляет собой бампер, если он не должен изменить форму более чем на 0,005 мм? Не забудьте, перед ударом мы его изрядно подогрели газовой горелкой. А еще все это повторяется 200 раз в секунду. Такие вот испытания выпали на долю нашего подопечного. Идеальный поршень в таких жестоких условиях должен быть абсолютно жестким, т. е. никак не менять свою форму. Тепловые нагрузки не должны его деформировать. Его вес должен быть близок к нулю. Износ от контакта с сопряженными деталями должен отсутствовать. В первой части статьи мы определили характеристики, связанные с тепловыми процессами в двигателе. Совершенно понятно, что нет в природе материалов, отвечающих всем этим требованиям. Прежде чем остановиться на материалах, из которых изготавливают поршни, попробуем понять, почему такие требования предъявляются к поршням. Пожалуй, одним из главных показателей качества работы поршневой группы являются механические потери, которые неизбежны во время движения. Для того чтобы преодолевать силы трения, препятствующие движению, часть механической энергии, полученной от рабочего тела, будет потеряна на нагрев. Доля этих потерь, приходящаяся на поршневую группу в общих механических затратах двигателя, весьма высока. Она порой превышает 50% от общих потерь в двигателе. Существенным моментом для понимания важности вопроса является тот факт, что желание многих тюнеров увеличить рабочие обороты мотора и за счет газодинамики (доработка сечений каналов, формы камеры сгорания, фаз газораспределения) получить большую мощность при высоком вращающем моменте в широком диапазоне скорости вращения упирается в растущие механические потери. Значительная часть сил сопротивления растет линейно со скоростью, а следовательно, потерянная мощность растет в квадратной зависимости. Если не приняты меры по снижению механических потерь, то все старания могут быть напрасны. Неизбежен тот момент, когда вся механическая энергия будет потрачена на себя любимого и колеса вращать будет просто нечем. Поэтому подход к поршневой группе как к линейному подшипнику скольжения имеет первостепенное значение в конструкции поршня. Конечно, главный вклад в сопротивление движению вносят поршневые кольца, которые в силу их функций должны быть плотно прижаты к стенкам цилиндра. Однако роль поршня состоит в том, чтобы кольца все время были правильно ориентированы и была обеспечена их работоспособность. Также совершенно справедливое желание конструктора не допустить сухого контакта тела поршня с гильзой цилиндра диктует жесткие требования к его геометрии. Дело в том, что, как и в любом подшипнике скольжения, роль разделительного слоя здесь играет масло, препятствующее контакту металлических поверхностей. А точнее, масляный клин, образующийся в зазоре при движении деталей. Высокое давление в масляном клине, способное противодействовать прижимающим силам, может существовать только в зазорах, исчисляемых тысячными долями миллиметра. Величина силы пропорциональна площади, на которую масляный клин давит. Поэтому так важно во время работы сохранять параллельность поверхности юбки поршня стенкам цилиндра с такой сумасшедшей точностью. Совершенно понятно, что не допускается никакой шишковатости, иначе возникнут локальные контакты, которые станут генераторами тепла и приведут к развитию неблагоприятных процессов по всей поверхности. Не забудем еще и о поршневом пальце, которому необходимо создать условия качающегося подшипника скольжения с его стабильными зазорами, исчисляемыми теми же крохотными величинами. В случае идеального поршня, описанного нами ранее, сказочного «несгибаемого оловянного солдатика», все более-менее понятно. Каким мы его получим после механической обработки, таким он и будет всегда, при любых условиях его работы. Тогда мы заранее с большой точностью можем придать ему нужные формы. А как быть с реальными материалами? Которые от механических нагрузок изгибаются. От температуры распухают. От разностенности коробятся. От неоднородности материала покрываются буграми и шишками. Нет другого пути, как при изготовлении придать ему такие формы, которые учтут все искажения, возникающие при реальных нагрузках во время работы. Именно поэтому поршень имеет такую сложную форму. По высоте он бочкообразный, потому что неравномерный нагрев вызывает большее расширение там, где температура выше. В сечении он овальный, так как механические нагрузки заставляют поршень «обвисать» на пальце, как лист бумаги, лежащий на карандаше. Причем в каждом сечении и овальность, и бочкообразность имеют свою величину. Очевиден тот факт, что величины деформации зависят от толщины металла, образующего стенки поршня. Понятно, что увеличение толщины повысит сопротивляемость нагрузкам и облегчит жизнь конструктору. Однако рост массы неизбежно приведет к увеличению инерционных сил, которые испортят жизнь всему кривошипно-шатунному механизму. Тут, как и в любом другом случае, вопрос оптимизации требует от конструктора разрешения. Так как же, в конце концов, находится выход из трудного положения? Почему все-таки автомобильные двигатели уверенно прогрессируют в сторону их высокооборотности? Каким образом находятся способы разрешения этих противоречий? На заре моторостроения просто изготавливался поршень совершенно цилиндрической формы и двигатель запускали. Давали ему поработать, не доводя мотор до разрушения, и разбирали. Следы контакта с гильзой устраняли механической обработкой и повторяли эксперимент, увеличивая нагрузку. Затем снова обрабатывали места контакта и снова нагружали. Если выявлялись слабые места, которые надо усилить, изготавливали новый поршень со скорректированными толщинами стенок. Повторялось это многократно до тех пор, пока двигатель с полной нагрузкой не начинал работать стабильно и поршень признавался удовлетворительным. В современном мире с хорошей точностью можно расчетными методами проектировать геометрию вновь создаваемых поршней. Последующие за расчетами испытания приводят, как правило, к корректировке, однако количество экспериментов несравнимо уменьшается. Тем не менее, подогнанный под условия работы поршень нельзя считать абсолютно соответствующим предъявляемым требованиям. Ведь величины деформаций, которые компенсируются предварительно заданной формой, зависят и от теплового режима, и от величины сил, на него действующих. Так как автомобильный двигатель многорежимный, эксплуатируемый в широком диапазоне нагрузок и температур, скорее всего, поршень будет хорош только для некоторого диапазона условий работы. Это одна из проблем автомобильных двигателей в целом. В серийном производстве, как правило, на базе одного мотора одновременно выпускается целое семейство разных агрегатов, предназначенных для разных целей. А выпуск новых автомобилей, требующих новых двигателей, часто сопровождается модификацией уже отработанных конструкций с целью удовлетворить новым требованиям. Известны факты, когда низ мотора, включающий блок цилиндров и коленчатый вал с его подшипниками, практически без изменений стоял на конвейере десятилетиями, переходя из одного кузова в другой. Даже более того, применялся и для бензиновых, и для дизельных моторов одновременно. Поршневые группы, как более зависимые от назначения двигателя, почти всегда подвергались модификации. Именно поэтому в номенклатуре производителей поршней такое большое разнообразие их форм. Именно поэтому, когда мы хотим получить от серийного двигателя больше мощности, будь то его тюнинговый вариант или, более того, спортивный, необходимо сознавать, что, скорее всего, серийный поршень не будет соответствовать новым предъявляемым к нему требованиям. Или мы получим дополнительные потери, которых можно было бы избежать, или съедим весь запас надежности. Наверное, и то и другое одновременно. Случай применения дополнительного наддува или окислителя, такого, как закись азота, точно так же создает новые условия работы поршневой группы. Существенным моментом в конструкции, как мы выяснили, является материал, из которого поршень изготовлен. Свойства материала определяют характеристики изделия и его конструкцию. Автомобильные поршни изготавливаются преимущественно из алюминиевых сплавов, реже из чугуна. Чугун, обладая рядом таких приятных качеств, как низкий коэффициент линейного расширения, равный по величине материалу гильзы цилиндра, высокая термостойкость, высокая прочность, отличные подшипниковые свойства, в настоящее время практически не применяется. Тормозом послужили два обстоятельства. Во-первых, низкая теплопроводность и, как следствие, плохая детонационная стойкость мотора, не позволяющая использовать высокие степени сжатия. Во-вторых, большой удельный вес является препятствием к быстроходности. Из алюминиевых сплавов для поршней в подавляющем большинстве используются силумины, то есть сплавы системы алюминий – кремний с различным содержанием кремния. Реже – ковкие сплавы системы алюминий – медь. Кремнийсодержащие сплавы в свою очередь делятся на две группы по содержанию в них кремния. Это – доэвтектические и заэвтектические. К первым относят сплавы с содержанием кремния до 12%, ко вторым – более 12%. У первых кремний в свободном виде, так называемый первичный кремний, отсутствует и весь он растворен в алюминии. Это АЛ-25, АЛ-30, АК12, Mahle 124. Вторая категория содержит кремний в свободном виде – в виде кристаллов, которые иногда видны невооруженным глазом на срезе или сломе образца. Известны АЛ-26, АК18, АК21, ВКЖЛС, Mahle 138, Mahle 224. Заэвтектические сплавы с содержанием 18% или 22% кремния применяются в основном для дизелей большого объема. Причина состоит в большей износостойкости и термопрочности, что важно для обеспечения ресурса седельных тягачей. В серийном производстве поршни из алюминиевых сплавов отливают. Для снижения величины температурного расширения, а значит, и для получения многорежимных свойств используются стальные термокомпенсирующие вставки внутри отливки. В мелкосерийном и штучном производстве для придания лучших механических характеристик заготовки поршней получают методом изотермической штамповки или жидкой штамповки. Высокие давления в процессе формирования поковок способствуют уплотнению материала и, как следствие, улучшению его свойств. Однако такая технология полностью исключает наличие любых вставок. Это обстоятельство делает изготовленные по такой технологии поршни в большей степени однорежимными. В основном такие поршни используются для сильно нагруженных моторов, выпускаемых малыми сериями. Спортивных, например. Для спортивных моторов, которые по назначению ближе к однорежимным, нашли применение сплавы алюминий – медь. Это АК-4-1, Mahle YG. Заготовки из них также прессуют. В сравнении с силуминами они имеют лучшие физико-механические характеристики при рабочих температурах, но отличаются на 20% большим коэффициентом линейного расширения. Также к недостаткам можно отнести относительно быстрое старение и разрушение от усталостных напряжений. Тем не менее, в авиационных поршневых моторах, а также в автомобильных спортивных, которые ограничены по ресурсу и имеют повышенные требования к весу поршня, встречаются довольно часто. Несколько слов об износе. Правильно подобранный под требования мотора поршень почти никогда не контактирует со стенкой цилиндра. Исключение составляют холодные пуски и работа под нагрузкой непрогретого мотора. Поэтому даже после значительного пробега, составляющего 200000 км и более, изменение размера юбки незначительно и лежит в пределах 0,01 – 0,03 мм, если двигатель без коллизий нормально изнашивался. Гильза же цилиндра, особенно в верхней ее части, может быть изношена кольцами до 0,15 мм. Но это совсем не означает, что поршень можно продолжать использовать и он в состоянии, близком к новому. Основной параметр, по которому бракуется поршень, – износ канавок колец. Как правило, к этому сроку и форма, и размер канавки как минимум первого кольца за пределами допуска. Существенным обстоятельством не только износа, но и эффективности мотора является геометрия и состояние поверхности цилиндра. Во-первых, искажение цилиндричности точно так же влияет, как и неверная форма поршня в смысле сохранения зазоров в паре поршень – цилиндр. Наиболее вероятными причинами нарушения формы являются напряжения в блоке от крепежных элементов головки и КПП. Также важна микрогеометрия, т. е. глубина и форма хоновой сетки. Фирма Mahle, ведущий производитель поршней в Европе, считает, что преждевременный износ моторов, прошедших капитальный ремонт, в 80% случаев является следствием именно неправильного микрорельефа поверхности. В заключение хочу сказать, что в данной статье я показал только некоторые аспекты функционирования поршневой группы. Я исходил из предположения, что читатель не является профессиональным двигателистом, однако интересуется работой мотора и тюнинг – его стиль жизни. Поэтому тут не затронуты многие вопросы, которые всегда стоят перед конструктором нового двигателя. Здесь только небольшое обобщение тех тем, которые по инициативе клиентов тюнингового подразделения компании «Дилижанс» и автоспортсменов обсуждались в различные периоды нашей деятельности. Date: 2015-07-23; view: 542; Нарушение авторских прав |