Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Построение касательных к двум окружностям





При вычерчивании контуров предметов сравнительно часто приходится строить общие касательные к двум дугам окружностей. Общая касательная к двум окружностям может быть внешней, если обе окружности расположены с одной стороны от нее, и внутренней, если окружности расположены с разных сторон касательной.

Построение общей внешней касательной к двум окружностям радиусами R и r (рисунок 47). Из центра окружности большего радиуса – точки O1 описывают окружность радиусом R – r (рисунок 47, а). Находят середину отрезка O2O1точку O3 и из нее проводят вспомогательную окружность радиусом O3O2 или O3O1. Обе проведенные окружности пересекаются в точках A и В. Точки O1 и B соединяют прямой и в пересечении ее с окружностью радиусом R определяют точку касания D (рисунок 47, б). Из точки O2 параллельно прямой O1D проводят линию до пересечения с окружностью радиусом r и получают вторую точку касания C. Прямая CD является искомой касательной. Так же строится вторая общая внешняя касательная к этим окружностям (прямая EF).

 

 

а б

 

Рисунок 47

 

Построение общей внутренней касательной к двум окружностями радиусов R и r (рисунок 48). Из центра любой окружности, например: точки O1, описывают окружность радиусом R + r (рисунок 48, а). Разделив отрезок O2O1 пополам, получают точку O3. Из точки O3 как из центра описывают вторую вспомогательную окружность радиусом O3O2 = O3О1 и отмечают точки A и В пересечения вспомогательных окружностей. Соединив прямой точки A и O1 (рисунок 48, б), в пересечении ее с окружностью радиуса R получают точку касания D. Через центр окружности радиуса r проводят прямую, параллельную прямой O1D, и в пересечении ее с заданной окружностью определяют вторую точку касания С. Прямая CD – внутренняя касательная к заданным окружностям. Аналогично строится и вторая касательная EF.

 

 

а б

Рисунок 48






Date: 2015-07-23; view: 217; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию