Главная Случайная страница



Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







ГЛАВА 1. ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ ДАННЫХ





1.1. Понятие термина «интеллектуальный анализ данных»

Термин интеллектуальный анализ данных можно понимать двояко. В узком смысле это попытка адекватного русского перевода термина Data Mining, который ввёл в обиход Григорий Пятецкий-Шапиро в 1992 году. Согласно его определению Data Mining — это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных, доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Дословный перевод «раскопки (или добыча) данных» следует, по всей видимости, считать неудачным.[1]

В широком смысле это современная концепция анализа данных, предполагает следующее:

· данные могут быть неточными, неполными (содержать пропуски), противоречивыми, разнородными, косвенными, и при этом иметь гигантские объёмы; поэтому понимание данных в конкретных приложениях требует значительных интеллектуальных усилий;

· сами алгоритмы анализа данных могут обладать «элементами интеллекта», в частности, способностью обучаться по прецедентам, то есть делать общие выводы на основе частных наблюдений; разработка таких алгоритмов также требует значительных интеллектуальных усилий;

· процессы переработки сырых данных в информацию, а информации в знания уже не могут быть выполнены по старинке вручную, и требуют нетривиальной автоматизации.

Необходимость интеллектуального анализа данных возникла в конце XX века в результате повсеместного распространения информационных технологий, позволяющих детально протоколировать процессы бизнеса и производства.

По составу решаемых задач Data Mining практически не отличается от стандартного набора средств, применяемых с середины XX века в области прикладной статистики, машинного обучения (machine learning), информационного поиска (information retrieval). Основное различие заключается в эффективности алгоритмов и технологичности их применения. Подавляющее большинство классических процедур имеют время выполнения, квадратичное или даже кубическое по объёму исходных данных. При количестве объектов, превосходящем несколько десятков тысяч, они работают неприемлемо медленно даже на самых современных компьютерах. За последние десятилетия значительные усилия в области Data Mining были направлены на создание специализированных алгоритмов, способных выполнять те же задачи за линейное или даже логарифмическое время без существенной потери точности.



Введем определение анализа данных как такового. Основой для анализа данных служит моделирование. Построение моделей является универсальным способом изучения окружающего мира. Построение моделей позволяет обнаруживать зависимости, извлекать новые знания, прогнозировать, управлять и решать множество других задач. Большинство экономических систем относятся к категории сложных, т.е. с большим количеством элементов и сложными связями.

Рассмотрим принципы построения моделей:

· при анализе отталкиваться от опыта эксперта;

· рассматривать проблему под разными углами и комбинировать подходы;

· не стремиться к высокой точности модели, а двигаться от более простых и грубых моделей к более сложным и точным;

· по прошествии времени и накоплению новых сведений нужно повторять цикл моделирования;









Date: 2015-07-11; view: 342; Нарушение авторских прав



mydocx.ru - 2015-2021 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию