Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Кристаллографические способы обозначения в решетках





Для обозначения ориентации кристаллографических плоскостей направлений и точек в кристаллографической решетке принято пользоваться особыми индексами (индексы Миллера).

Для обозначения положения плоскостей пользуются индексами, устанавливаемыми из величины отрезков, отсекаемых этими плоскостями на осях координат: (на осях кристалла – ребрах элементарной ячейки) (рисунок 1.10).

 

Рисунок 1.10. Схема определения индексов плоскостей: а - (111); б - (210)

 

Эти отрезки измеряются не в сантиметрах, но в долях ребер элементарной ячейки, принимаемых за единицу измерения вдоль каждой из осей.

Чтобы определить индексы плоскости нужно:

1. Найти отрезки, отсекаемые на трех осях, измеренные в осевых единицах.

2. Взять обратные величины этих чисел.

3. Привести отношение этих трех обратных значений к отношению трех взаимно простых чисел.

Приведенная плоскость отсекает отрезки, равные а, в и с, т.е. по единице на каждой оси. Кристаллографическое обозначение такой плоскости (111). Плоскость с координатами , 1 и ¥ получит обозначение (210). Совокупность нескольких плоскостей в кристалле с одинаковым кристаллографическим обозначением обозначается теми же индексами, но с заключением в фигурные скобки {111} {110} и т.д.

В кубической решетке имеется три группы плоскостей {100}, а именно: 3 группы плоскостей куба; 4 группы плоскостей октаэдра; 6 групп плоскостей ромбического додекаэдра (рисунок 1.11).

В каждой плоскости может быть несколько кристаллографических направлений. Кристаллографическое обозначение направлений определяется в последовательности аналогичной последовательности операций, проводимых для определения индексов плоскости (рисунок 1 12). Отличие заключается в том, что опускается 2-й пункт, т.е. не берутся обратные величины отсекаемых отрезков. Обозначение направлений заключается в квадратные скобки.

 

Рисунок 1.11. Основные плоскости куба. Обозначения указаны на плоскостях

 

Рисунок 1.12. Основные направления в кубе. Обозначения указаны на соответствующих направлениях

 

В каждой плоскости может быть несколько кристаллографически равнозначных, но непараллельных направлений. Так, для кубической решетки имеются три направления [110] в плоскости октаэдра (111), два направления [100] и два направления [110] в плоскости куба (100). Положение точек в решетке обозначают с помощью координат, каждая из которых составляет часть или кратное от соответствующих осевых единиц а, в или с, причем за начало координат принимается одна из вершин ячейки. Тогда координаты точки в вершине любой другой ячейки выразятся целыми числами m, n и p.

Точки в центрах элементарных ячеек имеют координаты:

,

а в ячейке с началом координат в собственной вершине: .

Атом в центре грани XY решетки гранецентрированного куба имеет координаты: .

Иногда координаты точек заключают в двойные квадратные скобки: .

 

 







Date: 2015-07-11; view: 487; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию