Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Корсаковский (амнестический) синдром 6 page





Независимо от того, какие из существующих ныне и вновь возникших направлений окажутся решающими на пути познания природы психических болезней, очевидно, что их общая интегративная теория возникает как итог мультидисциплинарных подходов к рассматриваемой проблеме. Биологическая психиатрия будет играть видную роль в решении этой задачи.

Структурно-функциональные основы деятельности мозга

Общая психиатрия
Тиганов А.С. (под. ред.)

 

Большинство современных гипотез, касающихся этиологии и патогенеза психических расстройств и механизма действия психофармакологических и иных лечебных средств, связано с теми разделами нейронаук, которые имеют отношение к нейрохимическим (точнее структурно-химическим) системам мозга, нейрональным синапсам и рецепторам, а также к некоторым особенностям развития мозга.

 

Нейрон, синапсы, рецепторы

Общая психиатрия
Тиганов А.С. (под. ред.)

 

Цитоархитектоника головного мозга человека организована таким образом, что более чем 10 млрд. нервных клеток, занимая относительно небольшое пространство и будучи сформированными в специализированные структуры, обеспечивают специфические функции мозга, связанные с восприятием, переработкой и проведением информации, в соответствии с которой осуществляется взаимодействие организма с внешней средой на основе высокой нейрональной специфичности и пластичности.

Основной структурной единицей нервной системы является нейрон. Различные типы нейронов дифференцируются по величине и форме тела клетки, а также по длине и степени ветвистости ее отростков.

Клеточное тело по своим размерам варьирует очень широко — от 5 до 100 мкм в диаметре. Оно содержит следующие органеллы: ядро, митохондрии, эндоплазматический ретикулум (гладкий и шероховатый), расположенные на цистернах эндоплазматического ретикулума и в свободном пространстве рибосомы и полисомы, комплекс Гольджи и различные внутриклеточные включения (гранулы гликогена, липидные капли, скопления частиц пигмента в особых нейронах и др.), везикулы, а также лизосомы. Группы параллельно расположенных цистерн шероховатого эндоплазматического ретикулума в виде ограниченных мембраной удлиненных цистерн с прикрепленными к ним рибосомами образуют субстанцию (тельца) Ниссля (тигроидное вещество). В цитоплазме имеются также нейрофиламенты и нейротрубочки (рис. 3).

Все перечисленные ультраструктурные органеллы клетки несут определенные функции. Ядро является субстратом основных генетических процессов в клетке. Митохондрии обеспечивают энергетический обмен — в них происходит окислительное фосфорилирование, приводящее к продукции энергии в виде молекул АТФ. Эндоплазматический ретикулум с прикрепленными на его цистернах рибосомами, а также свободно расположенные рибосомы и их комплексы (полисомы) имеют отношение к белковому обмену и синтетическим процессам в клетке. Лизосомам приписывается обменно-выделительная роль. Нейротрубочки и нейрофиламенты обеспечивают транспорт внутриклеточных веществ, имеющих отношение к проведению нервного импульса. Долгое время считали, что комплекс Гольджи, состоящий из параллельно расположенных цистерн и скоплений пузырьков на их концах, выполняет неопределенные обменно-выделительные функции. Хотя об этом комплексе известно далеко не все, привлекают к себе накопленные многими исследователями данные, свидетельствующие о том, что он играет главную роль в процессах обновления клеточной мембраны и ее генетически обусловленной специализации. Известно, что в комплексе Гольджи может происходить первичная сборка специализированных участков мембраны (рецепторов), которые в виде пузырьков транспортируются к наружной клеточной оболочке и встраиваются в нее. Такие исследования были обобщены А.А.Милохиным (1983).

От тела нейрона отходят основной отросток — аксон и многочисленные ветвящиеся отростки — дендриты. Длина аксонов различных нейронов колеблется от 1 мм до почти 1 м (нервное волокно). Вблизи окончания аксон разделяется на терминали, на которых расположены синапсы, контактирующие с телом и дендритами других нейронов. Синапсы вместе с нейрофиламентами и нейротрубочками являются субстратом проведения нервного импульса.

Рис. 3. Основные ультраструктурные компоненты нейрона.

Л — лизосомы; ШЭР — шероховатый эндоплазматический ретикулум (цистерны с прикрепленными рибосомами); М — митохондрии; НФ — нейрофиламенты; НТ — нейротрубочки; P — рибосомы; П — полисомы (комплексы рибосом); КГ — комплекс Гольджи; Я — ядро; ЦЭР — цистерны эндоплазматического ретикулума; ЛГ — липидные гранулы; ЛФ — липофусцин.

Кроме нейронов, в ткани мозга имеются различные виды глиальных клеток — астроглия, олигодендроглия, микроглия. Астроглия играет большую роль в обеспечении функции нейрона и формировании реакции мозговой ткани на вредоносные воздействия (инфекция, интоксикация и др.) — принимает участие в воспалительных процессах и ликвидации их последствий (заместительный глиоз). Олигодендроглия, как известно, обеспечивает миелинизацию нервного волокна и регулирует водный обмен (дренажная глия). Функции микроглии не до конца изучены, но ее значение подчеркивается размножением этих клеток при некоторых специфических процессах (участие в формировании сенильных бляшек; существует предположение о выработке микроглиальными клетками амилоидных фибрилл и т.п.).

Особые клеточные структуры характерны для желудочковых поверхностей головного мозга и его сосудистого сплетения. Желудочковая поверхность мозга покрыта клетками эпендимы с многочисленными микроворсинками и ресничками, принимающими участие в ликворообращении; сосудистое сплетение представлено "гроздьями" ворсинок, состоящих из капилляров, покрытых эпителиальными клетками. Их основная функция связана с обменом веществ между кровью и цереброспинальной жидкостью.

Типичный синапс состоит из пресинаптической терминали, постсинаптической области и расположенной между ними синаптической щели. Пресинаптическая терминаль является окончанием аксона. Она содержит нейрофиламенты, нейротрубочки, митохондрии и синаптические пузырьки, скопления которых видны около пресинаптической мембраны. Через последнюю переносятся содержащиеся в пузырьках нейротрансмиттеры. Постсинапс характеризуется наличием постсинаптического утолщения. Постсинаптическое утолщение представлено мембраной клетки с расположенными на ней рецепторами, входящими в структуру самой мембраны. Синапс представлен на рис. 4, а его электронно-микроскопическая картина на рис. 5.

Синапс может быть расположен на теле (соме) клетки — аксосоматический синапс, на дендрите — аксодендритный, на шипике дендрита — аксошипиковый (рис. 6) и на аксоне другой клетки — аксо-аксональный. Аксошипиковые синапсы несколько отличаются по своему строению от типичного синапса, что определяется строением шипика, имеющего в составе постсинапса особый шипиковый аппарат.

Взаимодействие пресинапса и постсинапса обеспечивается благодаря переносу нейротрансмиттера через синаптическую щель. Выделяясь из пресинапса, нейротрансмиттер (медиатор) может связываться с рецептором постсинаптической мембраны, инактивироваться в синаптической щели и частично вновь захватываться пресинаптической мембраной (процесс обратного захвата — reuptake). Если рецептор постсинаптической мембраны заблокирован, то возможны оба последних процесса, а также избыточное накопление медиатора и связанное с этим развитие гиперчувствительности рецепторов (см. рис. 4).

Более подробно эти процессы рассматриваются в разделе "Нейрохимические системы мозга".

Рецепторы нейронов — это белковые структуры, расположенные на внешней поверхности мембраны клеток. Они способны "распознавать" и связывать биологически активные вещества — нейротрансмиттеры, различные эндогенные вещества, а также экзогенные соединения, в том числе психофармакологические средства. Соединения, которые могут связывать рецепторы, называются лигандами. Лиганды бывают эндогенными и экзогенными.

Распознавание лиганда рецептором обеспечивается специальными структурными элементами, или сайтами. Специфичность связывания лиганда происходит благодаря структурному соответствию молекул лиганда и рецептора, когда они подходят друг к другу по типу "ключ к замку". Реакция связывания является моментом запуска каскада внутриклеточных реакций, приводящих к изменению функционального состояния нейрона. В зависимости от "силы" и "прочности" связывания лиганда с рецептором употребляют понятие аффинности (сродства) лиганда по отношению к рецептору.

При связывании рецептора с лигандом может происходить как активация, так и блокада рецептора. В связи с этим говорят об агонистах и антагонистах рецепторов, а также о частичных агонистах (рис. 7).

Максимальную эффективность в отношении активации рецептора имеет полный агонист, минимальную (практически нулевую) — антагонист. Между ними находятся вещества, называемые частичными агонистами. Последние действуют значительно мягче, чем полные агонисты. Частичные агонисты, кроме того, занимая определенное пространственное положение в молекуле рецептора, могут предотвращать избыточное действие полного агониста, т.е. действуют частично как антагонисты. В этом случае употребляют понятие агонист/антагонист.

Высокой аффинностью могут обладать как агонисты, так и антагонисты рецептора. Агонист активирует рецептор, вызывая соответствующий физиологический эффект, в то время как антагонист, связываясь с рецептором, блокирует его и предотвращает развитие физиологического эффекта, выявляемого агонистами. Примером антагонистов могут служить нейролептики, которые предотвращают эффекты дофамина на уровне дофаминового рецептора.

При связывании лиганда с рецептором происходит изменение конфигурации последнего (рис. 7).

Многие вещества, как эндогенные, так и экзогенные, реагируют не с одним, а с несколькими типами рецепторов — "семейством" их, которое подразделяется на отдельные типы. Примером могут служить многие нейротрансмиттеры, реагирующие с несколькими типами специфических рецепторов (например, Д1—Д5-типы дофаминовых рецепторов). Существование нескольких рецепторов к одному лиганду носит название гетерогенности рецепторов.

Представление о функции рецепторов было бы неполным, если не представить внутриклеточные процессы, развивающиеся после связывания рецептора соответствующим веществом, и механизмы, обеспечивающие трансформацию внешнего сигнала в процессы, приводящие к появлению нервного импульса. Связывание лиганда с рецептором может приводить либо непосредственно к открытию (или закрытию) соответствующих ионных каналов (см. рис. 7), либо к активации вторичных мессенджерных систем (в качестве первичного мессенджера рассматривается вещество, реагирующее с рецептором).

Первые упоминания о вторичных мессенджерных системах появились в связи с работами E.Sutherland и соавт. (1950), которые показали, что адреналин стимулирует гликогенез путем увеличения концентрации циклического аденозинмонофосфата (цАМФ) в клетке. Оказалось, что этот вторичный мессенджер опосредует и другие клеточные реакции. В дальнейшем была выявлена связь действия цАМФ с активацией белковых киназ — ферментов, фосфорилирующих белки, что приводит к изменению их структуры и активности.

Позднее были открыты и другие вторичные мессенджеры. Сейчас выделяют среди них 3 класса: 1) циклические нуклеотиды (цАМФ, циклический гуанозинмонофосфат — цГМФ); 2) ионы кальция (Са2+); 3) метаболиты фосфолипидов — инозитол-1,4,5-трифосфат (1Р3), диглицерин (ДАГ), арахидоновую кислоту. В отличие от других вторичных мессенджеров Са2+ транспортируется в нейрон из внутриклеточного пространства.

Мембраны нейрона содержат специализированные трансмембранные белки, которые формируют ионные каналы не только для Са2+, но и для других ионов, концентрация которых по обе стороны мембраны влияет на изменение мембранного потенциала. Происходят поляризация и деполяризация мембраны, т.е. изменение трансмембранного потенциала. Наибольшее значение в этих процессах имеют ионные каналы для натрия (Na+), калия (К+), хлора (С1-) и кальция (Са2+).

Нейрохимические системы мозга

Общая психиатрия
Тиганов А.С. (под. ред.)

 

В 60—70-х годах с помощью гистохимических и радиоиммунологических методов было установлено, что в мозге имеются дифференцированные нейрохимические системы — норадренергическая, дофаминергическая, серотонинергическая и др. Они представляют собой комплекс мозговых структур, функция которых определяется наличием общего нейротрансмиттера и рецепторов, взаимодействующих с ним. В одних из структур, входящих в нейрохимическую систему, расположены тела нейронов, в других оканчиваются терминали нервных клеток. В последнем случае говорят о проекциях на те или иные мозговые образования. В одних и тех же структурах мозга могут располагаться клетки и проекции нескольких нейрохимических систем.

Дофаминергическая система. В этой системе мозга различают 7 отдельных подсистем (систем, трактов): нигростриатную, мезокортикальную, мезолимбическую, тубероинфундибулярную, инцертогипоталамическую, диенцефалоспинальную и ретинальную. Из них первые 3 являются основными (рис. 8). Тела нейронов нигростриатной, мезокортикальной и мезолимбической систем расположены на уровне среднего мозга, образуют комплекс нейронов черной субстанции и вентрального поля покрышки. Они составляют непрерывную клеточную сеть, проекции которой частично перекрываются, поскольку аксоны этих нейронов идут вначале в составе одного крупного тракта (медиального пучка переднего мозга), а оттуда расходятся в разные мозговые структуры. Формирование нигростриатной, мезолимбической и мезокортикальной систем определяется областями, где оканчиваются аксоны дофаминергических нейронов, т.е. локализацией их проекций. Некоторые авторы объединяют мезокортикальную и мезолимбическую подсистемы в единую систему. Более обоснованным является выделение мезокортикальной и мезолимбической подсистем соответственно проекциям в лобную кору и лимбические структуры мозга (см. рис. 8).

Нигростриатная система. Нигростриатный тракт является самым мощным в дофаминергической системе мозга. Аксонами нейронов этого тракта выделяется около 80 % мозгового дофамина. Тела дофаминовых нейронов, образующих этот путь, находятся в основном в компактной части черной субстанции, но часть волокон берет начало также от нейронов латерального отдела вентрального поля покрышки среднего мозга.

Клетки компактной части черной субстанции дают проекции в дорсальный стриатум (полосатое тело), а клетки вентрального поля покрышки — в вентральный стриатум. Наиболее плотно расположены дофаминергические волокна в стриатуме — они начинаются от латеральных отделов черной субстанции того же полушария. Эти волокна оканчиваются на нейронах хвостатого ядра и скорлупы, т.е. в неостриатуме. Дофаминергическую иннервацию получают также другие структуры, в частности базальные ганглии — бледный шар (палеостриатум) и субталамическое ядро. У хвостатого ядра более плотная иннервация отмечается в головке и значительно меньше плотность дофаминергических проекций в каудальной части.

Мезокортикальная система. Тела нейронов, образующих мезокортикальный тракт, находятся в вентральной части покрышки среднего мозга, а основные проекции этих нейронов достигают лобной (преимущественно префронтальной, поле 10 по Бродману — рис. 9) коры. Соответствующие окончания расположены в основном в глубоких слоях лобной коры (V—VI). Мезокортикальная дофаминовая система оказывает большое влияние на активность нейронов, образующих корково-корковые, корково-таламичес-кие и корково-стриатные пути.

Мезолимбическая система. Источники дофаминергических проекций, т.е. тела нейронов этой системы, расположены в вентральном поле покрышки среднего мозга и частично в компактной части черной субстанции. Их отростки идут в поясную извилину, энториальную кору, миндалину, обонятельный бугорок, аккумбентное ядро, гиппокамп, парагиппокампальную извилину, перегородку и другие структуры лимбической системы мозга. Имея обширные связи, Мезолимбическая система опосредовано проецируется также на лобную кору и гипоталамус. Это определяет широкие функции мезолимбической системы, которая участвует в механизмах памяти, эмоций, обучения и нейроэндокринной регуляции.

Другие тракты. Тубероинфундибулярный тракт образован аксонами нейронов, расположенных в аркуатном ядре гипоталамуса. Отростки таких нейронов достигают наружного слоя срединного возвышения. Этот тракт осуществляет контроль секреции пролактина. Дофамин тормозит его секрецию и поэтому содержание пролактина в плазме крови служит косвенным показателем функции дофаминергической системы мозга, что часто используют для оценки влияния на нее психофармакологических средств. Инцертогипоталамический тракт начинается от zona incerta и оканчивается в дорсальном и переднем отделах медиального таламуса, а также в перивентрикулярной области. Он принимает участие в нейроэндокринной регуляции. Источником проекций диенцефалоспинального тракта являются нейроны заднего гипоталамуса, отростки которых достигают задних рогов спинного мозга. Ретинальный тракт расположен в пределах сетчатки глаза. Особенности этого тракта делают его среди других дофаминергических трактов достаточно автономным.

Приведенная дифференциация дофаминергических образований мозга не является абсолютной, так как проекции дофаминергических нейронов разных трактов "перекрываются". Кроме того, в мозге отмечается и диффузное распределение дофаминергических элементов (отдельных клеток с отростками).

Дофаминергические системы мозга созревают преимущественно в постанальном периоде.

Дофаминовые терминали образуют синапсы преимущественно на шипиках и стволах дендритов — это аксошипиковые и аксодендритные синапсы (их более 90 %). Лишь единичные синапсы (менее 10 %) расположены на телах нейронов (аксосоматические) и на аксонах (аксо-аксональные).

Основными типами дофаминовых рецепторов являются Д1- и Д2-ре-цепторы. Недавно были открыты также рецепторы ДЗ, Д4 и Д5. Они все находятся главным образом на постсинаптической мембране. Но в дофаминергической системе существуют также ауторецепторы, расположенные на теле нейронов, аксонах, дендритах и терминалях, которые реагируют на собственный дофамин, регулируя его синтез и выделение. Их стимуляция приводит к снижению активности дофаминовых нейронов.

Большая часть охарактеризованных дофаминовых рецепторов относится к Д2-рецепторам. О функции Д1-рецепторов известно меньше. Их от Д2-рецепторов отличает способность стимулировать активность фермента аденилатциклазы, которая в свою очередь участвует в синтезе второго мессенджера — цАМФ. Д1- и Д2-рецепторы существуют в двух формах — высоко- и низкоаффинной, что определяется по их способности к связыванию агонистов и антагонистов. Было показано, что Д2-рецепторы сродство к бутирофенонам, в то время как Д1-рецепторы такой способностью не обладают.

Д2-рецепторы преобладают в стриатуме — хвостатом ядре и скорлупе, но имеются также в поясной извилине и коре островка. В стриатуме Д2 обнаружены не только на дофаминергических, но и на холинергических нейронах. Это объясняет сопряженное выделение ацетилхолина при введении агонистов дофамина. Картирование Д1-рецепторов дало менее убедительные результаты, однако было установлено, что они преобладают в коре больших полушарий, особенно в области префронтальной коры, где имеются и Д2-рецепторы. Д1-рецепторы есть и в стриатуме.

Рецепторы ДЗ, Д4, Д5 были открыты относительно недавно. Структурные особенности и фармакологические свойства рецепторов ДЗ близки к таковым рецепторов Д2. Рецептор Д4 также имеет сходство с Д2 и ДЗ, а рецептор Д5 — с Д1.

Различные психофармакологические препараты, будучи агонистами или антагонистами, относительно избирательно влияют на Д1- и Д2-рецепторы. Так, фенотиазины блокируют Д1- и Д2-рецепторы; галоперидол и пимозид являются более сильными блокаторами этих рецепторов; сильным антагонистом считается также сульпирид. В противоположность им флупентиксол высокоаффинен к Д1-рецепторам.

Большое значение для понимания механизмов действия нейролептиков на уровне дофаминовых рецепторов придают их молекулярному строению. Оказалось, что молекулы дофамина и фенотиазина, по данным рентгеноструктурного анализа, обладают определенным структурным сходством. Есть также сходство в молекулах дофамина и амфетамина (агонист дофамина). Поэтому нейролептики способны устранять психотомиметические эффекты последнего.

Длительное введение нейролептиков приводит к повышению связывания дофаминовых рецепторов и усилению поведенческих реакций на агонисты дофамина. Это явление трактуется как гиперчувствительность дофаминовых рецепторов. С ним связывают развитие побочных явлений при лечении нейролептиками, в частности с гиперчувствительностью рецепторов в стриатуме — развитие экстрапирамидных расстройств. Но открытие атипичных нейролептиков внесло некоторые коррективы в ранее существовавшие представления. Оказалось, что такой атипичный нейролептик, как сульпирид, являясь высокоспецифичным по отношению к Д2-рецепторам (в отличие от Хлорпромазина, галоперидола и др.), действуя на клетки вентральной области покрышки, иннервирующие лимбическую кору и кору больших полушарий, не влияет на нейроны черной субстанции, проецирующиеся на полосатое тело. Этим объясняется редкость возникновения лекарственного паркинсонизма при лечении сульпиридом.

Такой атипичный нейролептик, как клозапин (лепонекс), связывает не только Д2-, но в большей степени Д1-рецепторы и рецепторы других нейрохимических систем (серотониновые, ацетилхолиновые и др.).

Серотонинергическая система. Нейроны, являющиеся источником путей серотонинергической системы, находятся главным образом в переднем (ростральном) и заднем (каудальном) ядрах шва мозгового ствола. Они образуют группы клеток, расположенные от передней части мезенцефалона до нижних отделов продолговатого мозга. Отростки этих клеток широко разветвлены и проецируются на большие области коры переднего мозга, его желудочковую поверхность, мозжечок, спинной мозг и образования лимбической системы (рис. 10).

Нет рисунка

В ядрах шва серотонинергические нейроны локализуются вместе с нейронами другой химической принадлежности (ГАМКергическими, выделяющими субстанцию P, энкефалиновыми и др.).

В основе функционирования серотонинергической системы лежит выделение серотонина, или 5-окситриптамина (5-hydroxytriptamine, 5-HT) в синаптическую щель. В последней он частично инактивируется и частично захватывается обратно пресинаптической терминалью. Именно на эти процессы влияют антидепрессанты последней генерации, которые получили название ингибиторов обратного захвата серотонина.

В серотонинергической системе имеется 2 типа рецепторов — 5-НТ1 и 5-НТ2. Существует тенденция разделять их на подтипы: 5-НТ1А и т.д. Один из относительно новых анксиолитиков — буспирон — способен стимулировать именно 5-НТ1А-рецепторы.

С нарушением функции серотонинергической системы связывают развитие психических нарушений, проявляющихся депрессией и тревогой.

Норадренергическая система. Источником норадренергических путей в мозге являются группы клеток, расположенных в мозговом стволе и ретикулярной формации. Они включают клетки голубого пятна (locus ceruleus), вентромедиальной части покрышки и др. Отростки таких клеток сильно разветвлены и коллатеризированы. Области, на которые распространяются восходящие проекции этих клеток, захватывают ствол мозга, гипоталамус, таламус и разные отделы коры, а нисходящие достигают спинного мозга (рис. 11). Восходящие норадренергические проекции являются компонентом восходящих активирующих систем.

Адренергические рецепторы разделяются на - и ß1-, а последние на ß1 и ß2. Рецепторы ß1 локализуются на нейроне, а ß2 — на клетках глии и сосудов. Агонистом ß1-рецепторов является норадреналин, а ß2-рецепторы более чувствительны к адреналину.

Рецепторы типов 1 и 2 хорошо изучены фармакологически. Специфические ингибиторы 1-рецепторов обладают антигипертензивными свойствами, 2-рецепторы в большой степени определяют активность центральной и периферической адренергической систем. Пресинаптические а2-рецепторы на норадренергических терминалях тормозят выделение норадреналина, имея отношение и к регуляции кровяного давления. Об этом свидетельствует, в частности, влияние клонидина, который будучи антигипертензивным средством уменьшает также симптомы абстиненции при алкоголизме и наркоманиях.

Холинергическая система. Эта система состоит из нейронов, выделяющих ацетилхолин — ее нейротрансмиттер. Холинергические нейроны достаточно широко представлены в мозге, но центральными областями ее являются кора (лобная, теменная, височная), гиппокамп, хвостатое тело и ядро Мейнерта (базальное ядро Мейнерта), функции которых имеют отношение к когнитивным процессам, включая память.

Функционирование холинергической системы определяют мускариновые ацетилхолиновые рецепторы — Ml и М2, различающиеся по вторичным внутриклеточным процессам (вторичные мессенджерные системы). Последнее делает их сходными с гистаминовыми рецепторами.

ГАМКергическая система. ГАМК (гамма-аминомасляная кислота) синтезируется из глютаминовой кислоты при участии декарбоксилазы. Этот фермент локализуется в нейронах, использующих ГАМК как тормозящий нейротрансмиттер. К ГАМКергической системе относятся интернейроны коры, афферентные волокна, идущие от полосатого тела к бледному шару и черной субстанции, а также клетки Пуркинье мозжечка. С ГАМКергической системой связано и тормозящее влияние глицина, локализация которого ограничена нейронами ствола мозга и спинного мозга. Быстрое развитие торможения нейрональной активности путем активации глициновых и ГАМКергических рецепторов опосредовано открытием ионных хлорных каналов, что позволяет ионам С1 проникать в нейрон, вызывая их гиперполяризацию. В результате этого они становятся менее чувствительными к стимулам. С функцией ГАМК-рецепторов связано действие бензодиазепинов — их агонистов.

ГАМК-рецепторы также имеют подтипы. Так, с бензодиазепинами реагирует ГАМКВ-рецептор, агонист его баклофен является сильным антиспастическим агентом.

Структуры мозга, в которых обнаруживается наибольшее содержание ГАМК, имеют и высокий уровень дофамина. Поэтому во многих предположениях об участии ГАМК в патогенезе психических расстройств этот нейротрансмиттер рассматривается в связи с изменением функции дофаминергических нейронов. Существует мнение, что ГАМК не только нейротрансмиттер, но и синаптический модулятор на уровне дофаминового рецептора. С функцией ГАМКергической системы связывают также положительное влияние глицина в некоторых случаях шизофрении (в частности, при резистентности к нейролептикам).

Помимо структурно организованных нейрохимических систем, большую роль в функциях мозга играют и другие нейротрансмиттеры и рецепторы, в числе которых должны быть названы возбуждающие аминокислоты и гистамин.

Возбуждающие аминокислоты. Функция этих аминокислот имеет отношение к деятельности перечисленных нейрохимических систем, особенно ГАМКергической. К возбуждающим аминокислотам относятся глютамат и аспартат, которые рассматриваются как основные возбуждающие нейротрансмиттеры в мозге. Опосредуют эффекты глютамата три главных рецептора, дифференцирующихся по их основным специфическим агонистам, — N-метил-О-аспартат (NMDA), квискуалат и каинат, т.е. имеются NMDA-, квисквалатные и каинатные рецепторы. С функцией этих рецепторов, особенно NMDA и каинатных, связывают действие некоторых антисудорожных средств и психотомиметиков (например, фенциклидина).

Продолжительная стимуляция таких рецепторов может вызывать дегенерацию нейронов, в то время как аксоны тех же клеток, особенно на отдаленных от тела нейрона участках, остаются сохранными. Такая реакция получила название "эксайтотоксичности" (exitotoxicity). Она может быть вызвана, например, инъекцией в полосатое тело каиновой или хинолиновой кислоты (эндогенный метаболит триптофана), которые действуют и на NMDA-рецепторы, приводя к развитию нейродегенеративного процесса, напоминающего гистологическую картину хореи Гентингтона.

Гистамин. Это вещество содержится в тканях и биологических жидкостях организма. Оно имеется и в тканях мозга, причем его содержание, например, в гипофизарной области превосходит уровень других биологических аминов. Большое количество гистамина в гипоталамусе, сосудистом сплетении, эпифизе и меньшее — в таламусе, среднем мозге и коре.

Date: 2015-07-02; view: 439; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию