Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Схема 20. Химическая структура нейрогормонов





 

Таким образом, аргинин-вазопрессин, лизин-вазопрессин и окситоцин являются полипептидами, состоящими из 9 аминокислотных остатков, отличающихся друг от друга лишь аминокислотными остатками, расположенными в положениях 3 и 8.

Молекулярная масса вазопрессина составляет 1084, изоэлектрическая точка- рН 10,9; период полураспада – около 10-15 мин. (от 1,1 до 24,1 мин) как у практически здоровых лиц, так и у больных центральным несахарным диабетом и нефрогенным несахарным диабетом. Вазопрессин в циркуляции не связывается белками крови. Однако большая его часть ассоциируется с тромбоцитами, т.к. плазма, богатая тромбоцитами, содержит вазопрессина в 5-6 раз больше, чем плазма без тромбоцитов.

Секреция вазопрессина из нейрогипофизарных нейронов регулируется не только осмо- и барорецепторами, но различными медиаторами: дофамин, серотонин, вещество Р, простагландины, норадреналин, ацетилхолин, ГАМК, глицин, гистамин, ангиотензин II, электролиты плазмы. Синтез и высвобождение вазопрессина стимулируют повышение осмолярности жидкостей организма, гипокалиемия, гипокальциемия, увеличение концентрации натрия в спинномозговой жидкости, снижение артериального давления, уменьшение объема внеклеточной и внутрисосудистой жидкости, стимуляция ренин-ангиотензиновой системы, b-адренергические и холинергические вещества, повышение температуры тела и гипоталамуса, а также ацетилхолин, никотин, апоморфин, морфин (в высоких дозах), адреналин, гистамин, изопротеренол, брадикинин, простагландины, b-эндорфин, винкристин, циклофосфамид, инсулин, 2-деоксиглюкоза, ангиотензин, литий, хлорпропамид и клофибрат. Секреция вазопрессина угнетается при снижении концентрации натрия в спинномозговой жидкости, повышении артериального давления и увеличении объема крови, снижении температуры тела и в области гипоталамуса, приеме антихолинергических веществ, b-адренергических блокаторов, a-адренергических стимуляторов и угнетении ренин-ангиотензиновой системы, а также при приеме алкоголя, глюкокортикоидов, клонидина гидрохлорида, норадреналина, галоперидола, прометазина, оксилорфана, бутофанола, карбамазепина, морфина (низкие дозы), мусцимола и фенитоина.

Основным регулятором секреции вазопрессина является изменение осмотического давления. Осморецепторы, которые преимущественно локализуются в передней части мозга, а именно в переднем гипоталамусе, реагируют на изменение менее чем на 1% осмолярности плазмы. Внегипоталамические печеночные или портальные осморецепторы реагируют, когда осмолярность плазмы отклоняется на 1% и более от нормальных величин.

Исследованиями (C. Thompson и соавт., 1986; J. Davison и соавт.,1987) установлено, что в норме содержание вазопрессина в плазме составляет 2 пг/мл; осмолярность плазмы – 285-287 ммоль/кг, а мочи – 500 ммоль/кг. При увеличении общей жидкости в организме на 1% осмолярность плазмы снижается на 1% (2,8 ммоль/кг), концентрация вазопрессина – до 1 пг/мл и осмолярность мочи – до 250 ммоль/кг. И, наоборот, при уменьшении количества воды в организме на 2% осмолярность плазмы повышается на 2% (5,6 ммоль/кг), уровень вазопрессина также увеличивается с 2 до 4 пг/мл, осмолярность мочи составляет 1000 ммоль/кг. Таким образом, исходя из этих данных, повышение осмолярности плазмы на 1 ммоль/мл должно сопровождаться увеличением концентрации вазопрессина на 0,38 пг/мл и повышением осмолярности плазмы на 100 ммоль/кг.

Помимо осморецепторов, в регуляции осмотического давления принимают участие барорецепторы левого предсердия, каротидного синуса и дуги аорты. Афферентные нервные импульсы из этих зон приводят к ингибированию секреции вазопрессина. И, наоборот, уменьшение силы нервной импульсации от этих рецепторов приводит к повышению высвобождения вазопрессина (P. Norsk, 1989; K. Goetz и соавт., 1991).

Биологическое значение вазопрессина в организме многообразно. Помимо поддержания нормального осмотического давления в организме, он участвует в следующих процессах: а) поддержание артериального давления посредством барорецепторов и прямым влиянием на сосудистую стенку; б) является одним из регуляторов секреции АКТГ; в) увеличивает процесс высвобождения ТТГ из тиротрофов гипофиза; г) увеличивает синтез простагландинов интерстициальными клетками мозгового слоя почек; д) вызывает сокращение мезанглиальных клеток клубочка; е) обладает митогенным эффектом; ж) вызывает агрегацию тромбоцитов и способствует высвобождению факторов коагуляции – фактора Виллебранда, VIIIc фактора и активатора плазминогена тканевого типа и участвует в процессах ЦНС, в частности, процессах памяти.

Это многообразное действие вазопрессина объясняется его взаимодействием с двумя типами плазматических рецепторов. Внутриклеточным медиатором антидиуретического действия вазопрессина в почках является цАМФ. Однако его гликогенолитическое влияние в печени и гладких мышцах сопровождается повышением внутриклеточного кальция. В последующем было показано, что V1 рецепторы опосредуют действие вазопрессина через диацилглицерин и инозитолтрифосфат, а V2 рецепторы-посредством цАМФ. Последний тип рецепторов локализуется на мембранах клеток кортикальной и медуллярной частей собирательных трубок и восходящей части петли Генле. Взаимодействие вазопрессина с V2 рецепторами активирует аденилатциклазу и образование цАМФ, что сопровождается увеличением проницаемости для воды мембраны клеток собирательных трубок и петли Генле. V1 рецепторы выявляются в гепатоцитах, мембранах печени, гладких мышцах сосудов и тромбоцитах. Клетки аденогипофиза содержат рецепторы к окситоцину и вазопрессину, опосредующие их влияние на секрецию АКТГ. Установлено, что в гипофизе также имеются V1 рецепторы, четко отличающиеся от V1 рецепторов печени. V1, V2 и рецепторы к окситоцину характеризуются близкой структурой и относятся к рецепторам, имеющим 7 трансмембранных фрагментов.

Вазопрессин стимулирует синтез PgE, которые ингибируют влияние гормона на активность аденилатциклазы и таким образом снижают антидиуретический эффект вазопрессина. Назначение ингибитора простагландинов (индометацина) потенцирует антидиуретическое действие вазопрессина. Синтез простагландинов стимулируется также ангиотензином, брадикинином, которые несомненно участвуют в модификации действия вазопрессина на почки.

Биологическое действие окситоцина, который, как и вазопрессин, секретируется в гипоталамусе, направлено на стимуляцию сокращения мышц матки и миоэпителиальных клеток, окружающих альвеолы молочной железы, что обеспечавает поступление молока из альвеол в протоки железы. В этих основных органах-мишенях (матка и молочные железы) выявляются рецепторы, связывающие окситоцин. Ионы марганца и магния усиливают процессы взаимодействия окситоцина с соответствующими рецепторами, которые относятся к плазматическим рецепторам, имеющим 7 трансмембранных фрагментов.

Рецепторы у окситоцину, кроме молочных желез, выявляются также в почках, гипоталамусе, гипофизе и некоторых отделах ЦНС, а к вазопрессину – в стенках артерий, дистальных отделах канальцев почек, гипофизе и гипоталамусе.

Механизм действия окситоцина опосредуется аденилатциклазной системой в условиях обязательного присутствия ионов кальция и магния. Определенное место отводится взаимодействию этих гормонов и простагландинов. Так, показано, что физиологический ответ матки на окситоцин зависит от присутствия простагландинов.

Инактивация окситоцина и вазопрессина осуществляется главным образом почками (40%) и печенью (около 50%). Экзогенно введенный вазопрессин частично (10-20%) экскретируется с мочой в биологически активной форме. При почечной форме несахарного диабета вследствие ухудшения связывания вазопрессина с рецепторами количество экскретируемого вазопрессина увеличивается. В процессах инактивации окситоцина определенное место занимает также молочная железа.

Date: 2015-07-01; view: 410; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию