Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Теорема3





Для линейной зависимости трех векторов необходимо и достаточно,чтобы эти векторы были компланарны.

Пусть векторы a, b, c линейно зависимы, тогда один из них линейно выражается через другие. Пусть c = αa + βb. Усли а и b коллиниарны, то а, b, с коллиниарны и, тем более, компланарны. Если a и b неколлинеарны, то отложим векторы a, b, c от одной точки (рис. 2, б). Тогда вектор с, являясь диагональю параллелограмма, построенного на векторах αa и βb, окажется в той же плоскости, что и a, b. Значит, a, b, c компланарны.

Достаточность. Пусть a, b, c компланарны, т.е. параллельны одной плоскости. Будем считать, что a, b неколлиниарны (так как если a, b коллиниарны, то линейная зависимость a, b, c следует из линейной зависимости подсистемы). Отложим a, b и с от одной точки. Тогда они окажутся в одной плоскости и на основании утверждения 2 будем иметь c = αa + βb. В силу теоремы 2.2 отсюда следует, что векторы a, b, c линейно зависимы.

 

 

Вопрос 5.

Векторы и линейно зависимы тогда и только тогда, когда они коллинеарны (лежат на параллельных прямых).

Векторы линейно зависимы тогда и только тогда, когда они компланарны (лежат в одной плоскости).

 

6 вопрос.

Базисом в пространстве называются три некомпланарных вектора , взятые в определённом порядке (рис.1.32). Эти векторы называются базисными.


Пусть в пространстве задан базис . Построим прямые , содержащие базисные векторы соответственно. Без ограничения общности можно считать, что эти прямые пересекаются в одной точке (в противном случае можно было взять любые пересекающиеся в одной точке прямые , параллельные прямым соответственно, поскольку проекции вектора на параллельные прямые равны. Тогда любой вектор можно однозначно представить в виде суммы своих проекций: , где — векторы, принадлежащие прямым соответственно (см. п.2 теоремы 1.1). Раскладывая проекции по базисам на соответствующих прямых (см. разд.1.3.1), находим: . Подставляя эти разложения в равенство , получаем

 

(1.4)

Таким образом, справедлива следующая теорема.

 

Теорема 1.5 (о разложении вектора по базису в пространстве). Любой вектор может быть разложен по базису в пространстве, т.е. представлен в виде (1.4), где числа определяются однозначно.

 

Коэффициенты в разложении (1.4) называются координатами вектора относительно базиса (число , называют абсциссой, — ординатой, а — аппликатой вектора ). Например, числа являются координатами вектора ( — абсцисса, — ордината, — аппликата вектора ).

 

Базисные векторы , отложенные от одной (произвольной) точки, называются репером.

 

 

7 вопрос.

 

Векторы называются компланарными, если они принадлежат одной или параллельным плоскостям.

Два вектора и трехмерного пространства всегда компланарны.

необходимое и достаточное условие компланарности трех векторов в пространстве.

Для компланарности трех векторов и трехмерного пространства необходимо и достаточно, чтобы их смешанное произведение равнялось нулю.

Доказательство.

Пусть , докажем что векторы и компланарны.

Так как , то векторы и перпендикулярны в силу необходимого и достаточного условия перпендикулярности двух векторов. С другой стороны, по определению векторного произведения вектор перпендикулярен и вектору и вектору . Следовательно, векторы и компланарны, так как перпендикулярны одному вектору .

8 вопрос.

Скалярным произведением двух ненулевых векторов называется число, равное произведению длин этих векторов на косинус угла между ними. Если хотя бы один из двух векторов нулевой, то угол между ними не определён, а скалярное произведение считается равным нулю. (написать в ручную)

 

 

где — величина угла между векторами и .

Скалярное произведение вектора самого на себя называется скалярным квадратам.

Свойства.

Свойства скалярного произведения:

переместительный закон

сочетательное свойство

распределительное свойство.

скалярный квадрат равен квадрату его длины

 

 

9 вопрос.

Векторное произведение

 

Векторное произведение векторов и - вектор, обозначаемый или для когорого:

1) ( - угол между векторами и , );

2)

3) тройка , , - правая.

Свойства векторного произведения:

если , то равен площади параллелограмма, построенного на приведенных к общему началу векторах и .

10 вопрос.

Теорема. Пусть , , . Тогда:

1) ;

2) .

Доказательство. 1) Используем свойство линейности векторного произведения:

.

Далее, заметим, что векторные произведения коллинеарных векторов равны нулевому вектору:

.

Рассмотрим другие векторные произведения базисных векторов:

рис.4.

, , .

Эти равенства легко устанавливаются с помощью рис.4.

Отсюда следует:

, ч.т.д.

2) Воспользуемся только что доказанной формулой:

.

Теперь, по теореме о скалярном произведении векторов в координатной форме, получаем:

, ч.т.д.

 

Date: 2015-07-01; view: 338; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию