![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Построение модели множественной линейной регрессии с использованием метода наименьших квадратов (МНК)
В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии. Простая регрессияпредставляет собой модель, где среднее значение зависимой (объясняющей) переменной
Множественная регрессия представляет собой модель, где среднее значение зависимой (объясняющей) переменной
Любой эконометрическое исследование начинается со спецификации модели, т.е. с формулировки вида модели исходя из соответствующей теории связи между явлениями. В первую очередь из всего круга вопросов, влияющих на результативный признак, необходимо выделить наиболее существенно влияющие факторы. Парная регрессия достаточна, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной. Наибольшую опасность в практическом использовании методов регрессии представляют ошибки измерения. Если ошибки спецификации можно уменьшить, изменяя форму модели (вид математической формулы), а ошибки выборки ― увеличивая объем исходных данных, то ошибки измерения практически могут свести на нет все усилия по количественной оценке связи между признаками. Особенно велика роль ошибок измерения при исследовании на макроуровне. Для построения модели множественной линейной регрессии с
где:
Обычно при построении модели множественной линейной регрессии предполагается отсутствие корреляций всех объясняющих переменных друг с другом. На основе
где Для оценки параметров уравнения регрессии используется метод наименьших квадратов (МНК). Основные идеи МНК рассмотрим на примере частного случая модели множественной линейной регрессии при
При применении МНК неизвестные оценки
где Необходимое условие минимума обеспечивается приравниванием нулю частных производных суммы квадратов остатков по величинам
где Из этих условий вытекают два уравнения для определения величин
Решая систему из двух уравнений, получим:
где Коэффициент
где
Date: 2015-07-17; view: 570; Нарушение авторских прав |