Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Теплофизические свойства высокоогнеупорных материалов
Окончание табл. 3.16
Поскольку эти материалы по сравнению с кварцем имеют более высокую теплопроводность, длительность контакта жидкого металла с формой при их применении снижается. 3.4.1. Хромит Хромит, или хромистый железняк – природный материал, содержащий хромшпинелиды. Химическая формула основного минерала в хромите FeO·Cr2O3, в котором содержится 68% Cr2O3 и 32% FeО. Однако из-за наличия примесей содержание Cr2O3 в хромите намного меньше. Минимальное содержание Cr2O3 в хромите 36%. К особенно вредной примеси в хромите относится CаСO3, который при нагревании разлагается с выделением CO2, что может вызывать образование газовых дефектов. Поэтому содержание СаО в хромите допускается не более 1,5%, содержание SiO2 – не более 7%, постоянно присутствующих примесей (п.п.п.) – не более 2%. Соотношение Cr2O3:FeО в природном материале находится в пределах Для уменьшения газовыделения (п. п. п.), особенно СО2, рекомендуется перед приготовлением формовочных смесей хромит прокаливать при температуре 900–1000°С. Температура плавления хромита (при содержании Cr2O3 до 40%) не превышает 1800°С, плотность – 3760–4280 кг/м3. Хромит имеет более низкий температурный коэффициент объемного расширения, чем кварц. Хромит применяется для приготовления облицовочных смесей (или паст), при производстве крупных стальных и чугунных отливок. Полагают, что при применении хромита отливки с чистой поверхностью получаются в результате его спекания с последующим закрытием пор при нагреве поверхности формы заливаемым и залитым металлом. 3.4.2. Магнезит Магнезит – горная порода, содержащая минерал МgСО3. Чис- При переработке магнезитовой породы путем обжига из нее удаляется CO2, а магнезит превращается в оксид магния MgO кристаллизующийся как минерал периклаз. Оксид магния имеет свойства, подобные извести, т. е. поглощает влагу из воздуха и гидратируется. Поэтому его обжигают до спекания при температуре свыше 1400°С с добавками оксидов железа. В результате получают металлургический магнезит, имеющий шоколадно-коричневый цвет и содержащий более 85% MgO – основного жаростойкого компонента. Если обжиг происходит при температуре 800–950°С, образуется обезуглероженный каустический магнезит, обладающий вяжущими свойствами. Чистый MgО имеет огнеупорность 2800°С, а магнезитовые изделия – более 2000°C. Зернистый материал для формовочных смесей получают дроблением отходов и боя магнезитовых изделий. Магнезит рекомендуется применять для приготовления облицовочных смесей или противопригарных красок, при получении отливок из высокомарганцовистых и других высоколегированных сталей. 3.4.3. Хромомагнезит Хромомагнезит представляет собой продукт обжига при температуре 1500–1600°С смеси, состоящей из 50–70% хромитовой руды В литейном производстве обычно применяются отходы и бой хромомагнезитового кирпича. Хромомагнезит используется для приготовления облицовочных смесей, паст и красок, при получении крупного стального литья из легированных сталей. Для приготовления облицовочных смесей используют размолотый хромомагнезит, имеющий остатки на ситах 1–016–50...60%, а на ситах 01–005 – 40...50%; для паст – остаток на ситах 04–016 – 30...40 %, а на ситах 01–005 и в тазике – 60...70%; для красок – остаток на сите 005–90%, остальное – остатки на ситах 01–0063. 3.4.4. Циркон Циркон – природный минерал, химическая формула ZrO2×SiO2. В природных цирконовых песках кроме циркона содержатся и другие минералы: кварц, рутил, дистен, ильменит, оксиды железа. С целью увеличения содержания циркона цирконовые пески обогащают до получения так называемого цирконового (обезжелезенного) концентрата, в котором содержится не менее 65% ZrО2 и не более 0,5% ТiО2, 0,1% Fe2О3, 0,1% Al2О3, 0,15% P2О5. Циркон имеет высокую огнеупорность – не ниже 1600°С (при
3.4.5. Оливин Оливин представляет собой изоморфную смесь форстерита и фаялита. Химическая формула его MgО·FeО·SiО2 (MgО – 23%, FeO – 42 и SiO2 – 35%). Температура плавления форстерита MgО·SiО2 – 1900°С, фаялита – 2FeO·SiO2 – 1200°С. Температура плавления оливина Горные породы, содержащие свыше 80% оливина, называют оливинитами, а породы, содержащие 60–80% оливина, – дунитами. Оливин применяют для облицовочных формовочных смесей при изготовлении крупных стальных и чугунных отливок, что позволяет получать их с более чистой поверхностью, чем при использовании кварцевого песка. Кроме того, использование оливина, в отличие от кварца, не вызывает заболевания рабочих силикозом. 3.4.6. Дистен-силлиманит Дистен-силлиманит содержит дистен и силлиманит, являющиеся модификациями одного и того же вещества (формула Аl2O3·SiO2), Химический состав дистен-силлиманитового концентрата следующий, %: не менее 57 Аl2O3, не менее 39 SiO2, не более 1,0 TiO2, не более 0,8 Fe2О3, не более 0,2 СаО, не более 0,2 Na2О + К2О, 0,4 MgО и 1– 2 ZrО2. Дистен-силлиманит применяется в противопригарных красках для стального литья. 3.4.7. Шамот Шамот получают путем обжига огнеупорной глины до спекания. Химический состав шамота различный и зависит от соотношения SiO2 и Аl2О3. Чем больше в шамоте содержание Аl2О3, тем выше его огнеупорность. Шамоты бывают кислые (SiО2:А2О3 > 4), нормальные (SiО2:А12О3 = 2...4), глиноземистые (SiО2:Аl2O3 < 2). Чистый Аl2O3 (корунд) имеет температуру плавления (2047±8)°С, а шамот (в зависимости от класса) – 1580–1750°С. Химический состав шамота, %: 30–45 А12О3; 54–70 SiO2; 4–7 ТiO2, Fе2О3, СаО, MgО, K2O, Na2O. Основным преимуществом шамота по сравнению с кварцевым песком является малое тепловое расширение, поэтому на отливах не образуется таких дефектов, как ужимины. Шамот дороже кварцевых песков. Он иногда применяется для изготовления форм многократного использования несложной конфигурации и при формовке по сухому для изготовления средних и крупных стальных и чугунных отливок. В литейных цехах из других алюмосодержащих материалов применяются муллит и корунд. Корунд Аl2О3 – минерал синего цвета (сапфир) плотностью 4000 кг/м3. В технике применяется синтетический корунд, получаемый плавлением боксита или чистых глин, богатых оксидом алюминия. Для ускорения обжига применяют добавки 1–2 % TiO2, который образует с корундом твердый раствор и ускоряет рост кристаллов корунда. Синтетический корунд содержит до 95% Аl2О3 и характеризуется наилучшими свойствами: огнеупорностью, термостойкостью при резких изменениях температуры, химической стойкостью и отсутствием объемных изменений. Чистый Аl2О3 применяется для изготовления форм при литье по выплавляемым моделям и в качестве наполнителя противопригарных красок для стального литья. Муллит 3Аl2О3 · 2SiО2 – высокоогнеупорный материал, получаемый путем сплавления каолина с корундом, применяется для изготовления форм при литье по выплавляемым моделям. В ряде случаев применяют и другие высокоогнеупорные наполнители формовочных смесей и противопригарных красок – рутил ТiО2, графит, шунгит.
3.5. Рекомендации по применению С учетом содержания вредных примесей, понижающих огнеупорность и противопригарную способность смесей, рекомендуется применять пески следующих групп: для крупного стального литья – 1К1–2, для среднего и мелкого стального, а также для крупного и среднего чугунного литья – 2К1–3, для среднего и мелкого чугунного литья, а также для всего цветного литья – 3К1–4, для мелкого несложного чугунного и всего цветного литья – 4К1–5. Тощие и жирные пески применяют для изготовления песчано-глинистых формовочных смесей для мелкого литья из чугуна и цветных сплавов. Для стального литья жирные пески не рекомендуются, так как в них содержится большое количество вредных примесей. С учетом зерновой структуры грубые пески группы 063 в литейном производстве не применяются, так как они образуют шероховатую поверхность отливок. Очень крупный и крупный песок групп 04 и 0315 используется при получении чугунных и стальных отливок массой свыше 1000 кг. Средний песок группы 02 рекомендуется для мелкого и среднего литья из чугуна и стали. Мелкий и очень мелкий пески групп 016 и 01 применяются при изготовлении тонкостенных чугунных и стальных отливок, а также отливок из цветных сплавов. Тощий песок группы 0063 применяется при производстве индивидуальных поршневых колец и других тонкостенных отливок. Обогащенные пески с низким содержанием глинистой составляющей (до 1,0%) рекомендуется использовать для изготовления форм и стержней по холодной и горячей оснасткам, из самотвердеющих смесей и прессованием под высоким давлением. Наиболее эффективными методами улучшения качества песков являются: гидравлическая обработка песка при высокотемпературной сушке, гидравлическая обработка с оттиркой и термическая обработка. Термическая обработка песка при высокотемпературной сушке (700– 850оС) в специальных установках с “кипящим слоем” при вихревом потоке горячего газа позволяет снизить способность кварцевого песка к расширению и растрескиванию. Кварцевый песок остается основным формовочным материалом во всех странах, несмотря на наличие месторождений оливинового, хромитового и других материалов. Использование высококачественных классифицированных кварцевых песков имеет технико-экономические преимущества. В отдельных случаях при индивидуальном и мелкосерийном производстве отливок целесообразна замена кварцевых песков некварцевыми. Так, например, смеси на основе хромитовых песков при литье стали дают возможность устранить механический пригар и улучшить качество поверхности отливок. Загрязнение хромитового песка кварцевым недопустимо из-за образования при высокой температуре жидкой фазы, которая ухудшает противопригарные свойства смеси. Формы для крупных отливок необходимо окрашивать. Эффективная регенерация хромитовой смеси достигается в специальной камере с последующей сушкой, воздушной и магнитной сепарацией. Применение хромита в совокупности с бентонитом для чугунного литья обеспечивает получение чистой поверхности отливок без добавки в смесь каменноугольной пыли.
4. Формовочные глины 4.1. Происхождение глин Литейными формовочными глинами называются горные породы, состоящие в основном из тонкодисперсных частиц, водных алюмосиликатов, обладающих связующей способностью и термохимической устойчивостью, достаточной для того, чтобы в определенных условиях образовывать прочные и не пригорающие к отливке формовочные смеси. По своему происхождению глины подразделяются на первичные и вторичные. Первичные – остаточные глины разложения – образовались в результате разложения кристаллических горных пород или выпадения из водных растворов, содержащих глинозем и кремнезем, и остались на месте образования. Вторичные глины образовались путем выпадения из водных растворов и перенесения с места своего образования в районы залегания. Состав глин, образовавшихся в результате разрушения горных пород, зависит от пород и степени кислотности или щелочности, характеризуемой концентрацией водородных ионов (рН). В кислой среде (рН<7) образуются каолинитовые, в щелочной (рН>7) –монтмориллонитовые глины. Формовочные глины являются минеральным связующим в формовочных смесях. 4.2. Минералогический состав формовочных глин Минералогический состав глин определяют с помощью рентгенографического и электронно-микроскопического методов анализа. Глины состоят из одного или нескольких минералов, содержащих Al2O3, зерен кварца и небольшой примеси некоторых других минералов, не содержащих глинозема. По содержанию основных глинистых минералов формовочные глины делятся на каолинитовые, каолинитогидрослюдистые и бентонитовые. К первой группе относятся глины, содержащие в основном минерал каолинит Al2O3·2SiO2·2H2O, его плотность 2,580–2,600 кг/м3, температура плавления 1750–1787°С. При нагреве каолинит претерпевает превращения: при 100–140°С удаляется гигроскопическая вода, при 400–700°С теряется конституционная (химически связанная) вода и наблюдается эндотермический эффект. Каолинит переходит в метакаолинит (Al2O3·2SiO2), и глина теряет связующую способность. При 900–1050°С метакаолинит распадается на смесь аморфных Al2O3 и SiO2. При 1200–1280°С из свободного глинозема и кремнезема образуется минерал 3Al2O3×2SiO2 (муллит), что сопровождается также эндотермическим эффектом. Каолинитовые глины находят широкое применение в литейном производстве и особенно для отливок стальных и чугунных деталей. Каолинитогидрослюдные глины представляют собой промежуточные продукты разложения от слюд к каолиниту. По своему химическому составу и физическому состоянию эти минералы непостоянны. Химический состав слюд К2О×3Al2O3×6SiO2×2H2O с температурой плавления 1150–1400°С. В зависимости от содержания Н2Онекоторые слюды относятся Основой бентонитовых глин является минерал монтмориллонит Al2O3×4SiO2×H2O×nH2O. В нем возможна замена некоторой части Al3+на Mg2+, а Si4+ – на Al3+. Особенностью монтмориллонита является способность расширяться в направлении одной из кристаллографических осей. Эти свойства позволяют проникать ионам Н+ и ОН– внутрь кристаллической решетки, что ведет к увеличению набухания глины. Температура плавления монтмориллонита – 1250–1300°С. Он способен отдавать или поглощать влагу из воздуха. При нагревании до 100–150°С из него удаляется гигроскопическая, а также межслойная вода (Н2О); при 600°С он теряет способность набухать в воде. При температуре 735–900°С происходит разрушение кристаллической решетки монтмориллонита и превращение его в аморфное вещество. В глинах обычно присутствует кварц (SiO2), от нескольких долей до 50%; являясь инертным материалом, он снижает связующую способность, пластичность, усадку и увеличивает газопроницаемость. Кроме того, в глинах присутствуют гидраты оксидов железа, карбонаты в виде кальцита, магнезита, доломита, сидерита, гипса, которые являются вредными примесями. 4.3. Структура глин Структура глинистых минералов имеет сложное слоистое строение. Глинистые минералы состоят из октаэдрических образований в виде пластинок толщиной 5×10-10м. Элементом октаэдрического образования является октаэдр, состоящий из атомов кислорода и гидроксилов. Внутри октаэдра расположен атом алюминия или магния (рис. 4.1, а). Элементом тетраэдрического образования является тетраэдр, состоящий из атомов кислорода. Внутри тетраэдра расположены атомы кремния (см. рис. 4.1, б). Рис. 4.1. Схема кристаллических решеток глинистых минералов: а – октаэдр; б – тетраэдр; в – решетка каолинита; г – решетка монтмориллонита Кристаллическая решетка минерала каолинита состоит из двух слоев: алюмогидроксильного и кремнекислородного, образующих так называемый “пакет” (см. рис. 4.1, в). Ввиду того, что отдельные пакеты каолиновой глины соприкасаются плоскостями различных атомов (кислорода и гидроксилов), они образуют достаточно прочную, так называемую водородную связь. При увлажнении каолиновой глины такие пакеты плохо расщепляются и слабо диспергируют. Это объясняется тем, что межпакетное расстояние каолиновой глины составляет около 2×10-10м, а радиус молекул воды – 1,45×10-10м, вследствие чего проникновение в межпакетный зазор и расщепление пакета затруднено. Кристаллическая решетка минерала монтмориллонита состоит Рис. 4.2. Схема глинистой мицеллы: а – адсорбционный слой; б – диффузный слой; в – сольватная оболочка При смешивании глин с водой в глинистых суспензиях образуется коллоидный раствор. В таком растворе вокруг глинистого минерала имеются ионы адсорбированного и диффузионного слоев мицелл (коллоидных частиц) (рис. 4.2), которые могут замещаться ионами другого элемента, имеющего тот же знак заряда. К обменным ионам в глинах относятся ионы К+, Na+, Mg2+, Ca2+. При обмене одних ионов на другие свойства глин изменяются. При замене ионов Са2+ ионами Na+ (при обработке глин содой) связующие свойства глин повышаются. Способность глин к ионному обмену измеряется в миллиэквивалентах на 100 г глины. 4.4. Классификация глин В соответствии с ГОСТ 3226–93 и ГОСТ 28177–89 формовочные глины делятся в зависимости от минералогического состава на каолинитовые, каолинитогидрослюдистые и бентонитовые (табл. 4.1). Таблица 4.1 Date: 2015-07-17; view: 1011; Нарушение авторских прав |