Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Притча и догма
Что же касается математики, то Лем и ей дает оценку, повторяя известное сравнение ее с портным-безумцем, шьющим по произвольному плану одежды. Надо прямо сказать, что в целом это оценка человека, незнакомого серьезно с математикой. Лем попросту не разобрался в клубке математических фактов и идей, идей, связанных с вычислимостью, финитностью, эффективностью, с тем рывком в область законов рассуждения, который сделала современная математическая логика. Повторяя слова Рассела: «Математика может быть определена как доктрина, в которой мы никогда не знаем, ни о чем говорим, ни того, верно ли то, что мы говорим», Лем, к сожалению, не знает, на каком математическом «фоне» они были сказаны. Д. Гилберт сравнивал математику с шахматами, и это сравнение преследовало определенную цель. Играя в «формальную игру», ученик Д. Гилберта Курт Гедель пришел к своим знаменитым теоремам. Лем также поминает шахматы и… притча, рассказанная великим математиком, становится в устах популяризатора догмой! Если математика есть игра, подобная шахматам, то почему же она пригодна для описания природы? Мы не можем подробно рассмотреть этот вопрос здесь, в послесловии. Скажем лишь кратко, что, следуя Дж. Джинсу и А. Эддингтону, мы считаем природу «математичной». (Это вовсе не значит, будто мы склоняемся к их философии.) Природа «математична» потому, что человек создает математику «под природу». Отыскивает то, что поддается математическому описанию, и вместе с тем раздвигает границы и обогащает формы самого описания. Лем же считает, что природа «нематематична». Довольно сложный спор о связи между реальностью и ее описанием, спор с участием Эйнштейна, Розена, Подольского, Бора и других физиков, Лем также не понял. Этот спор кратко изложен в одной из книг Дэвида Бома 35 в ее последних пунктах (стр. 700 и далее). Особенно наивным выглядит утверждение Лема, будто классической физике было свойственно представление о том, что каждый промежуточный этап математических вычислений должен обладать «материальным эквивалентом!» Поясним это. Пусть имеются два уравнения А и В, причем В выводимо из А. Существует «путь» с промежуточными уравнениями C 1, C 2, …, Cn, то есть цепочка следствий А => С. 1 => С. 2 => … => Сn => В. Сколько таких цепочек возможно? Бесконечно много! Всегда к обеим частям уравнения можно прибавить одно и то же число, а затем его вычесть. Это дает лишнее звено в цепочке. Всегда можно взять экспоненту от обеих частей уравнения, а затем прологарифмировать, и так далее. И все эти звенья должны иметь материальные эквиваленты? Иначе нет «изоморфизма» теории и реальности? О, sanctsimplicitas! 36 Впрочем, Лем «допускает» и теории, «не изоморфные» реальности, но «сходящиеся» с ней в конечных точках! Date: 2015-07-17; view: 334; Нарушение авторских прав |