![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Волновое уравнение. Мы рассматриваем здесь газ или жидкость (так же как твердое тело в предыдущих параграфах) как сплошную непрерывную среду ⇐ ПредыдущаяСтр 6 из 6
Мы рассматриваем здесь газ или жидкость (так же как твердое тело в предыдущих параграфах) как сплошную непрерывную среду, отвлекаясь от его атомистической структуры. Под смещением Будем считать, что рассматриваемый газ или жидкость находятся в очень длинной цилиндрической трубе, образующие которой параллельны оси х, и что смещение зависит только от одной координаты х. Мы можем применить к столбу газа или жидкости, заполняющему трубу, те же рассуждения, что и к стержню (§ 1). Мы придем, таким образом, к уравнению где р = — Уравнение (2.16) применимо и в случае плоских волн в неограниченной жидкой или газообразной среде (можно мысленно выделить цилиндрический столб, параллельный направлению распространения и применить к нему те же рассуждения, что к столбу, заключенному в трубе). Как известно из термодинамики, р есть функция плотности данной массы газа (или жидкости) и ее температуры. Температура в свою очередь изменяется при сжатии и разрежении. Теплопроводность газов и жидкостей очень мала, поэтому можно считать в первом приближении, что при распространении звука процесс сжатия и разрежения каждой части газа или жидкости происходит адиабатически, т. е. без заметного теплообмена с соседними частями. В термодинамике показывается, что в этом случае (если можно пренебречь внутренним трением и некоторыми другими явлениями температура является однозначной функцией плотности, и следовательно, давление также. При заданной деформации В газах и в жидкостях за некоторыми исключениями (например вода, при температуре ниже 4° С) температура растет при сжатии и уменьшается при расширении. Есть однозначная функция плотности: p=f(p). (2.17) Введем обозначения Подставляя первую формулу (2.18) в (2.16) и принимая во внимание, что при равновесии давление не зависит от х, т. е. получаем: Найдем теперь связь между а) Подставляя (6.28) в (6.27), имеем: P0+ разлагая f( P0+ Так как P0= f(
(2.20) Здесь мы сделаем существенное предположение: будем считать уплотнения и разрежения настолько малыми, что допустимо пренебречь в разложении (2.20) членами, пропорциональными ( Тем самым мы ограничиваем себя исследованием волн малой интенсивности. f’ ( б) Объем V0 в результате деформации превращается в объем V=V0 (1+ так как здесь поперечный размер (в отличие от твердого стержня) остается, постоянным, а длина превращается в. Но произведение плотности на объем, равное массе рассматриваемой порции вещества, не меняется:
Подставляя (2.18) и (2.21), получаем:
Пренебрегая и здесь высшими степенями малой величины, получаем:
Таким образом, (2.22) Подставляя, наконец, (2.22) в (2.19), мы получаем волновое уравнение
(2.23) (2.24) Отсюда заключаем, что рассматриваемые малые деформации распространяются в виде плоских не деформирующихся волн; скорость распространения (скорость звука) тем больше, чем сильное в данной среде возрастает давление при адиабатическом возрастании плотности; она раина квадратному корню из производной давления по плотности, взятой при значении последней в отсутствие волны (). 2. Случай идеального газа. Идеальным газом называется газ, для которого справедливо уравнение состояния pV=RT, (2.25) где p – давление, V—объем одного моля, R— универсальная газовая постоянная, равная 8,3143 эрг/град, T—температура, измеренная по термодинамической шкале («абсолютная температура»), или
где М— масса 1 моля, = M/V— плотность. Воздух, кислород, азот, водород и многие другие газы при комнатной температуре и давлении порядка атмосферного можно рассматривать с достаточным для акустики приближением как идеальные газы. Как учит термодинамика, в случае идеального газа соотношение (2.17) имеет вид (2.26) где
постоянная величина (С и С — теплоемкости газа соответственно при постоянном давлении и постоянном объеме). Следовательно, здесь (2.27) (формула Лапласа). Еще задолго до Лапласа вопросом о скорости звука в воздухе занимался Ньютон. Он считал, что (2.26а) т. е. не учитывал изменения температуры воздуха при распространении в нем звуковой волны, вследствие чего получил для скорости звука соотношение (2.27а) Это соотношение можно получить из уравнения (2.24), подставляя в него (2.26а) вместо (2.26). Для воздуха (=1,4) при комнатной температуре (20° С, Т =293°) формула Ньютона дает u =290 м/сек, формула Лапласа и =340 м/сек. Сравнивая эти значения с теми, которые дает опыт (гл. V, § 3), мы видим, что формула Лапласа, в отличие от формулы Ньютона, хорошо согласуется с опытом. Формула Лапласа хорошо подтверждается на опыте и для других газов (но крайней мере при не очень высоких частотах. Этим оправдывается предположение о том, что сжатие и разрежение газа в звуковой волне являются практически адиабатическими процессами.
Список использованной литературы.
· Горелик, Колебания и волны, · И.В. Савельев, курс общей физики, т.2, М, 1988г. · Б.М. Яворский, А.А. Пинский, Основы физики, т.2, М., 1972г. Date: 2015-06-11; view: 303; Нарушение авторских прав |