Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Микроструктура легированных сталей после охлаждения на воздухе из аустенитного состояния
1. Сталь перлитного класса имеют сравнительно малое содержание легирующих элементов, вследствие чего их критическая скорость закалки оказывается выше скорости охлаждения на воздухе. Поэтому при охлаждении на воздухе происходит распад аустенита диффузионным путем с образованием перлитных структур (перлит, сорбит или троостит), которые отличаются друг от друга различной дисперсностью пластин карбидов и легированного феррита. К сталям перлитного класса относится большинство конструкционных и инструментальных сталей: 20Х, 40Х, ЗОХГСА, X, ХГ, ХВГ, 9ХС и другие. На рис.1, б показана микроструктура стали ЗОХГСА в нормализованном состоянии. При ускоренном охлаждении на воздухе весь феррит не успевает выделиться из аустенита, который превращается в сорбит. Поэтому после нормализации зерен феррита значитепьно меньше, чем после полного отжига. 2. Стали мартенситного класса содержат больше легирующих элементов по сравнению со сталями перлитного класса. Легирующие элементы, повышая устойчивость переохлажденного аустенита к распаду, настолько снижают критическую скорость закалки, что она оказывается меньше скорости охлаждения на воздух».
Рис.7. Схема микроструктуры легированной стали мартенситного класса марки 20X13 после нормализации от 1050°С. Мартенсит и остаточный аустенит, х бОО, (Травление в электролите, содержащем 5-10 г щавелевой кислоты и 100 мл воды, при плотности тока О,1 А/см2 в течение 60-80 С)
Поэтому при охлаждении на воздухе сталь закаливается на мартенситную структуру (рис.7). К мартенситному классу относятся стали марок 20Х2Н4А, 20X13, 30X13, 50X13, Р9, Р6М5, Р18 и другие. 3. Стали аустенитного класса содержат большое количество легирующих элементов, которые снижают температуру начала мартенситного превращения в область отрицательных температур и настолько повышают устойчивость аустенита, что он после охлаждения на воздухе совершенно не распадается при комнатной температуре. К аустенитному классу относятся стали марок 12Х18Н9Т, Г13, 45Х14Н14В2М и другие (см. рис.5). 4. Для сталей карбидного класса условным признаком является уже не основная структура образца диаметром 15-20 мм, охлажденного на воздухе от аусгенитного состояния, а присутствие значительного количества карбидов, которые образуются при наличии в стали большого количества углерода и карбидообразующих легирующих алиментов Легирующие элементы, растворяясь в цементите, способны образовывать легированный цементит, например, (Fe,Mo)3C, (Fe,Cr)3C, (Fe,W)3C. Легированный цементит и специальные карбиды типа М6С, М7С3, М23Сб (где М - карбидообразующие элементы), например, Fe3Mo3C, Сг;С3, Сг23С6, имеющие сложную кристаллическую решетку, построенную из закономерно расположенных атомов металла и углерода, относятся к карбидам первой группы. Металлы, для которых отношение атомного радиуса углерода (0,079 нм) к их собственному радиусу меньше 0,59, способны образовывать специальные карбиды типа М2С и МС (М02С, W2C, WC, VC, TIC и другие), являющиеся фазами внедрения. Эти карбиды имеют сравнительно простую кубическую или гексагональную решетку, построенную из атомов металла, а атомы углерода внедрены в нее. Карбиды, представляющие фазы внедрения, относятся ко второй группе. Однако в чистом виде перечисленные карбиды в сталях не существуют. Все они растворяют железо, а при наличии нескольких карбидообразующих элементов- и эти элементы. Так, в хромомарганцовистой стали вместо специального карбида хрома Сг23Сб образуется сложный карбид (Сг,Мп,Fе)23С6, содержащий в твердом растворе железо и марганец. Следует отметить, что фазы внедрения значительно труднее растворяются в аустените при нагревании, чем карбиды первой группы и тем более, чем простой цементит Fe3C. Поэтому для растворения карбидов в аустените легированные стали, нагревают при термической обработке до более высоких температур, чем углеродистые стали. Карбиды повышают износостойкость, твердость и режущие свойства легированных сталей. К карбидному классу относятся инструментальные стали, например, марок Р9, Р18, Х12, Х12Ф1, ХВ5 и многие другие (см. рис.4). 5. Стали ферритного класса имеют минимальное содержание углерода при большом количестве легирующих элементов, расширяющих область α-железа (феррита). Такие стали, кристаллизуются с образованием структуры легированного феррита, который ни при охлаждении, ни при нагревании не превращается в аустенит (см. рис.6)
Date: 2016-07-05; view: 348; Нарушение авторских прав |