Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Непрерывность суммы равномерно сходящегося ряда из непрерывных функций. Почленное интегрирование и дифференцирование ряда





 

Теорема. Пусть на . Пусть . Тогда .

Доказательство. Требуется доказать, что функция непрерывна в точке , т.е. . Зафиксируем произвольное . Ввиду равномерной сходимости . В частности, . По условию, при любом функция - непрерывная. Значит, . При выбранных имеем: , что и требовалось доказать.

Следствие. Сумма равномерно сходящегося ряда, члены которого являются непрерывными функциями, есть непрерывная функция.

Доказательство. Применим предыдущую теорему к последовательности частичных сумм ряда.

Теорема (почленное интегрирование ряда). Пусть ряд равномерно сходится к своей сумме на отрезке и все . Тогда .

Доказательство. Обозначим при произвольном , . Тогда - непрерывная функция и, т.к. по предыдущей теореме - непрерывная функция, - также непрерывная функция. Тогда . Для доказательства теоремы достаточно доказать, что при , т.к., по определению, . Но . Поэтому при и требуемое утверждение доказано.

Замечание. Для функциональных последовательностей эта теорема формулируется следующим образом: Пусть на . Пусть . Тогда .

Теорема (о почленном дифференцировании ряда).

Пусть:

1. ;

2. Ряд сходится на (и пусть его сумма обозначена );

3. Ряд равномерно сходится на .

Тогда или, иными словами, .

Доказательство. Обозначим - сумму ряда . Тогда - непрерывная на функция. Поэтому существует ее интеграл от и он, по предыдущей теореме, равен . Значит, или .

Замечание. Соответствующая теорема для последовательностей может быть сформулирована так: Пусть . Пусть , и пусть , . Тогда , или .

 

 

Date: 2016-07-05; view: 451; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию