Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Глава 5 высокоуровневая графика





Одна из задач этого пособия состоит в том, чтобы помочь читателю в приобретении основных навыков по формированию графических моделей разнообразных функций, объясняющих математические зависимости, а также иллюстрирующих физические, химические, электромагнитные и др. процессы. Применение компьютерной графики часто оказывается полезным не только для наглядного представления результатов вычислений, но для отладки инженерных и научных программ.

Предполагается, что для понимания дальнейшего материала читатель знаком с интерфейсомMATLAB, а также имеет необходимый минимум знаний по работе с М-файлами, массивами чисел и их элементами, а также программированию и отладке программ в этой среде.

Высокоуровневая графика позволяет пользователю получать результаты в графическом виде, прикладывая минимум усилий. Основную работу, связанную с построением графика, масштабированием осей, подбором цветов, а в случае 3 -х мерной графики и с углом обзора наблюдаемого объекта берет на себя средаMATLAB.

В настоящей главе приводятся сведения, необходимые для построения графиков следующих типов:

графики на плоскости в декартовой системе координат;

трехмерные графики функций двух переменных в декартовой системе координат и особенности их построения.

Отдельно рассмотрены вопросы оформления графиков, их сохранения и экспорта, а также элементы анимации.

При создании с помощью компьютера графика той или иной зависимости необходимо иметь в виду, что компьютер способен работать только с числами, но не с непрерывными значениями аргументов и их функций. Поэтому, если порой наблюдателю кажется, что график той или иной функции представлен на экране монитора плавными кривыми или объемными телами, то это всего лишь иллюзия. Такая иллюзия достигается благодаря тому, что между отдельными значениями аргументов и их функций выбран достаточно малый интервал, а также тем, что современные мониторы и принтеры обладают настолько высокой разрешающей способностью, что глаз человека не способен воспринимать имеющиеся неоднородности в графической модели. Если этот интервал увеличить, то на графике функции будут видны изломы.

При чтении материала следует иметь в виду, что серый цвет в текстах программ использован для выделения фрагментов, которые содержат операторы вывода графиков, специальные команды, позволяющие менять способ их визуализации и команды по оформлению графиков.

D графика

 

Под 2D графикой будем понимать визуализацию результатов вычислений путем построения графических зависимостей на плоскости в декартовой (прямоугольной) или полярной системе координат. Дальнейший материал ограничен рассмотрением только декартовой системы координат, как наиболее часто применяемой при решении практических задач. При этом возможно построение графиков функций одной переменной или графиков функций, заданных параметрически, т. е. двумя уравнениями х(t) и у(t) при изменении t в заданных пределах.

При графической визуализации параметрически заданных функций вначале для одинаковых значений t вычисляются значения функций х(t) и у(t), а затем строится график зависимости у(х).

Читатель должен знать, что главным условием создания и визуализации графических зависимостей в MATLAB является четкое понимание того, как в этой среде осуществляются поэлементные операции с векторами.







Date: 2016-08-30; view: 314; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию