Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Как принять решение - приобрести инверторный источник питания или сварочный аппарат другого типа?





Инверторные источники питания имеют много преимуществ, которые улучшают сварочный процесс. Это малый вес и габариты, портативность, универсальность, способность работать с различным током питания. Предназначенные для промышленного применения инверторные источники питания весят от 17 кг до 40 кг, в то время как обычные TIG/Stick аппараты весят 176 kg.

Инверторные источники питания занимают мало места, они даже могут крепиться на стене. Характерная особенность инверторных источников питания - универсальность при подключении к различным сетям электропитания. В то время как обычные TIG сварочные аппараты приспособлены для однофазного тока, Miller инверторные источники питания благодаря Auto-Link™ или Auto-Line™ технологии могут использовать и однофазный и трехфазный ток, а также различное напряжение питания. Поэтому инверторные источники питания можно везде использовать.

 


Технологии пайки.

Пайка - это процесс получения неразъемного соединения материалов в твердом состоянии при нагреве ниже температуры их автономного плавления при смачивании, растекании и заполнении зазора между ними расплавленным припоем и последующей кристаллизации жидкой фазы с образованием спая.

ГОСТ 17325 «Пайка и лужение. Основные термины и определения» устанавливает применяемые в науке, технике и производстве термины и определения основных понятий в области пайки и лужения металлов и неметаллических материалов. Преимущества пайки как технологического процесса и преимущества паяных соединений обусловлены главным образом возможностью формирования паяного шва ниже температуры автономного плавления соединяемых материалов. Такое формирование шва происходит в результате неавтономного, контактного плавления паяемого металла в жидком припое, внесенном извне (пайка готовым припоем), либо восстановленным из солей флюса (реактивно-флюсовая пайка), либо образовавшемся при контактно-реактивном плавлении паяемых металлов, контактирующих прослоек или паяемых металлов с прослойками (контактно-реактивная пайка). В отличие от автономного плавления (одностадийного процесса, протекающего в объеме при температуре, равной или выше температуры солидус соединяемых материалов), контактное плавление того же материала протекает при контактном равновесии по поверхности контакта с твердым, жидким, газообразным телом, иными по со ставу; это многостадийный процесс, протекающий по разным механизмам; жидкая фаза при контактном плавлении твердого тела образуется ниже его температуры солидус.

Именно поэтому становится возможным общий нагрев паяемого узла или изделия до температуры пайки. Пайка обеспечивает получение бездефектных, прочных и работоспособных в условиях длительной эксплуатации, паяных соединений, если учтены следующие факторы: физико-химические, конструктивные, технологические, эксплуатационные.

Возможность образования спая между паяемым металлом и припоем характеризуется паяемостью, т.е. способностью паяемого металла вступать в физико-химическое взаимодействие с расплавленным припоем и образовывать паяное соединение. Но, кроме физико-химических факторов, определяющих природу основного металла, припоя и процессов их взаимодействия, необходимо учитывать технологические факторы, определяющие свойства паяных соединений, такие, как: конструкция паяного соединения, режим пайки, флюсующая среда и др. С точки зрения физико-химических процессов, прочность соединения определяется типом связей, образующихся между твердым и жидким металлами, и зависит от природы основного металла и припоя.

Практически пайкой можно соединить все металлы, металлы с неметаллами и неметаллы между собой. Необходимо только обеспечить такую активацию их поверхности, при которой стало бы возможным установление между атомами соединяемых материалов и припоя прочных химических связей.

С точки зрения технологии пайки паяемость есть отношение соединяемых материалов и припоя к основным процессам, происходящим при пайке (нагрев, плавление, смачивание, капиллярное течение, растворно-дифузионное взаимодействие, кристаллизация, охлаждение нагретого металла, деформация, взаимодействие металлов с газами, флюсами, шлаками и т.д.).

Отсутствие или плохая паяемость с этой точки зрения характеризуется отсутствием или плохой связью в зоне спаев, нежелательными изменениями физико-химических свойств основного металла в зоне паяного соединения, склонностью основного металла к образованию горячих и холодных трещин, но и от способа и режима пайки, от флюсующих сред, условий подготовки поверхности под сборку и пайку.


Для образования спая необходимым и достаточным есть смачивание поверхности основного металла расплавом припоя, что определяется возможностью образования между ними химических связей. Смачивание принципиально возможно в любом сочетании основ ной металл - припой при обеспечении соответствующих температур, высокой чистоты поверхности или достаточной термической или другого вида активации. Смачивание характеризует принципиальную возможность пайки конкретного основного металла конкретным припоем.

ГОСТ 23904 предусматривает метод определения смачивания материалов припоями. При физической возможности образования спая (физической паяемости) уже в какой-то мере гарантирована паяемость с технологической точки зрения при обеспечении соответствующих условий проведения процесса пайки.

ГОСТ 19249 «Соединения паяные. Основные типы и параметры» устанавливает основные типы паяных соединений, конструктивные элементы паяных швов, их обозначение и параметры.

Паяемость того или иного материала нельзя рассматривать как способность его подвергаться пайке различными припоями. Можно рассматривать только конкретную пару, и в конкретных условиях пайки. Важным моментом в оценке паяемости, как физической, так и технической, является правильный выбор температуры пайки, которая нередко является решающим фактором как в обеспечении смачивания припоем поверхности металла, но и дополнительным важным резервом повышения свойств паяных соединений. При оценке паяемости нужно учитывать температурный интервал активности флюсов. Паяльный флюс это активное химическое вещество, предназначенное для очистки и защиты поверхности паяемого металла и припоя. Флюсы не удаляют посторонние вещества органического и не органического происхождения (лак, краску).

Механизм флюсования флюсами, самофлюсующими припоями, контролируемыми газовыми средами, в вакууме, физикомеханическими средствами может выражаться:

1. В химическом взаимодействии между основными компонентами флюса и окисной пленкой, образующиеся при этом соединения растворяются во флюсе, либо выделяются в газообразном состоянии;

2. В химическом взаимодействии между активными компонентами флюса и основным металлом, в результате происходит постепенный отрыв окисной пленки от поверхности металла и переход ее во флюс;

3. В растворении окисной пленки во флюсе;

4. В растворении основного металла и припоя в расплаве флюса;

5. В диспергировании окисной пленки в результате адсорбционного понижения ее прочности под влиянием расплава флюса;

6. В разрушении окисной пленки продуктами флюсования.

Окисные флюсы взаимодействуют преимущественно с окисной пленкой, основой флюсования галоидными флюсами является реакция с основным металлом.

ГОСТ 19248 - "Припой. Классификация и обозначения»

ГОСТ 19250 - "Флюсы паяльные. Классификация."

Для повышения активности оксидных флюсов вводят фториды и фторборы, в результате одновременно с химическим взаимодействием между окислами происходит растворение окисной пленки во фторидах. К активным газовым средам относятся газообразные флюсы, которые работают самостоятельно или как добавка в нейтральные или восстановительные газовые среды для повышения их активности. Газообразные флюсы получают, например, из фтористого аммония, хлористого аммония, фторбората аммония, фторбората калия.


При пайке металлов в активных газовых средах удаление окисной пленки с поверхности основного металла и припоя происходит в результате восстановления окислов активными компонентами сред или химического взаимодействия с газообразными флюсами, продуктами которого является летучие вещества или легкоплавкие шлаки, к восстановительным средам относятся водород и газообразные смеси, содержащие водород и окись углерода в качестве восстановителей окислов металлов.

В качестве нейтральных газовых сред используют азот, гелий и аргон, роль газовой среды сводится к защите металлов от окисления.

Как газовая среда вакуум защищает металлы от окисления и способствует удалению с их поверхности окисной пленки. При пайке в вакууме, в результате разряжения, парциальное давление кислорода становится ничтожно малым и, следовательно, уменьшается возможность окисления металлов. При высокотемпературной пайке в вакууме создаются условия для диссоциации окислов некоторых металлов.

По условиям заполнения зазора способы пайки разделяются на капиллярные и некапиллярные. Капиллярная пайка по методу образования спая разделяется на пайку готовым припоем, контактно-реактивную, реактивно-флюсовую и диффузионную. При капиллярной пайке расплавленный припой заполняет зазор между паяемыми деталями и удерживается в нем под действием капиллярных сил. Размер зазора 0,5-0,7мм, он определяет структуру, химический состав, механические свойства соединения, экономичность процесса пайки, дефектность структуры: газовую пористость, ликвационные процессы. Оптимальный размер зазора между деталями при пайке определяется комплексом факторов - конструкцией со единения, металлургическими особенностями процесса взаимодействия припоя с паяемым металлом, активностью флюса или газовой среды, состоянием поверхности основного металла.

Капиллярная пайка, при которой используется готовый припой и затвердевание шва происходит при охлаждении, называется пайкой готовым припоем. Контактно-реактивной называется капиллярная пайка, при которой припой образуется в результате контактно-реактивного плавления соединяемых материалов, промежуточных покрытий или прокладок с образованием эвтектики или твердого раствора. При контактно-реактивной пайке нет необходимости в предварительном изготовлении припоя. Количество жидкой фазы можно регулировать изменением времени контакта, толщиной покрытия или прослойки, т.к. процесс контактного плавления прекращается после расходования одного из контактирующих мате риалов.

Диффузионной называется капиллярная пайка, при которой затвердевание шва происходит выше температуры солидус припоя без охлаждения из жидкого состояния. Припой, применяемый при диффузионной пайке, может быть полностью или частично расплав ленным, может образовываться при контактно-реактивном плавлении соединяемых металлов с одной или несколькими прослойками других металлов, нанесенных гальваническими способами, напылением или уложенных в зазор между соединяемыми деталями, или в результате контактного твердо-газового плавления. Цель диффузионной пайки - проведение процесса кристаллизации таким образом, чтобы обеспечить наиболее равновесную структуру соединения, повысить температуру распайки соединений.


При реактивно-флюсовой пайке припой образуется в результате восстановления металла из флюса или диссоциации одного из его компонентов. В состав флюсов при реактивно-флюсовой пайке входят легковосстанавливаемые соединения. Образующиеся в результате реакции восстановления металлы в расплавленном состоянии служат элементами при поев, а летучие компоненты реакции создаю защитную среду и способствуют отделению у окисной пленки от поверхности металла.

Пайка композиционным припоем используется тогда, когда соединяемые детали собраны с некапиллярным (< 0,7 мм) зазором и необходимо обеспечить высокие механические (или другие специальные) свойства соединений. Композиционный припой имеет гетерофазную структуру псевдосплава. Наносимый композиционный припой в виде порошка, сетки, волокон, образует разветвленный капилляр, который удерживает расплавленный припой (матрицу), смачивает поверхности паяемых металлов. Он обеспечивает основные физико-механические свойства соединений, матрица должна обеспечивать качественное смачивание накопителя и паяемого металла. Накопителями могут быть стальные волокна, порошки меди, никеля, кобальта, окиси алюминия, матрицей служат припои системы свинец-олово, медь-никель-марганец, никель-хром кремний.







Date: 2016-08-29; view: 336; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.013 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию