Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Огибающая и фаза узкополосного случайного процесса.
Случайный процесс y(t) = Um(t) cos (w0t+j(t)) называется узкополосным, если его ширина спектра значительно меньше, чем средняя частота w0. Um(t) - огибающая случайного процесса (случайная амплитуда) на рис.11.9; j(t) - фаза случайного процесса. Для нормального случайного процесса фаза j(t) распределена равномерно (см. выше).
Рис.11.9.
t
Огибающая нормального случайного процесса Um(t) распределена по закону Релея:
з-н Райса Рис.11.10.
Если узкополосный случайный процесс есть сумма нормального шума и гармонического колебания с амплитудой А, то его огибающая распределена по обобщенному закону Релея (закон Райса):
I0(.) - функция Бесселя от мнимого аргумента.
11.6.ФПВ и ФРВ для дискретных случайных процессов.
Дискретные случайные процессы принимают с определенной вероятностью значения, отличающиеся одно от другого на конечную величину. Вероятность таких значений – число не равное 0. Рассмотрим реализацию дискретного случайного процесса.
T 1+T2=T Для эргодического стационарного случайного процесса усреднение по множеству реализаций эквивалентно усреднению по времени одной реализации.
T1/T - вероятность того, что случайный процесс принимает значение а. T2/T - вероятность того, что случайный процесс принимает значение b.
ФПВ заданного случайного процесса в соответствии с полученным выражением показана на рис.11.12:
W(x)
Рис.11.12. b 0 a x
ФРВ для случайного процесса принимающего 2 значения x=a и x=b имеет вид:
b a
Вычислим среднее значение двоичного дискретного случайного процесса, принимающего 2 значения: x=a c вероятностью T1/T, x=b c вероятностью T2/T
11.7.Нелинейные безынерционные преобразования случайного процесса.
Нелинейное преобразование: y(t)=f[x(t)] – называется безынерционным, если y(tk) в момент времени tk зависит только от x(tk). ФПВ для процесса y на выходе:
Пусть характеристика нелинейного элемента может быть аппроксимирована линейно-ломаными.
b
Это нелинейное устройство называется ограничителем. Пусть на входе ограничителя действует нормальный случайный процесс с нулевым средним m1x=0.
ФПВ процесса x нарисована на рис.11.15 (верхний рисунок). Рассчитаем ФПВ процесса y: 1. Пусть
На интервале
x
W(y)
2. Пусть:
Выражаем x через у, т.е.
Это нормальная ФПВ со средним значением b и дисперсией
3.Пусть:
Это нормальная ФПВ, m1= -b и дисперсия ФПВ процесса y дана на рис.11.15 (нижний рисунок). Date: 2016-07-25; view: 476; Нарушение авторских прав |