Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Инициация – начало синтеза и-РНК.
Синтез и-РНК осуществляется при помощи фермента – РНК-полимеразы. У прокариот имеется только один вид этого фермента, у эукариот – пять видов. Сущность инициации состоит в том, что фермент РНК-полимераза отыскивает в молекуле ДНК стартовую область – промотор и прикрепляется к ней. Это происходит в течение 15-20 секунд. Элонгация – синтез молекулы и-РНК из свободных нуклеотидов по принципу комплементарности: аденину соответствует урацил, а цитозину – гуанин. За 1 секунду выстраивается около 50 нуклеотидов. Синтез и-РНК одновременно протекает в нескольких участках молекулы ДНК. Образующиеся фрагменты называются транскриптоны. В последующем они объединяются. Терминация – завершение синтеза и-РНК. Происходит тогда, когда РНК-полимераза встречается с особым участком молекулы ДНК – терминатором. У прокариот в роли терминатора выступают участки молекулы ДНК, имеющие «симметричное» строение – они одинаково читаются в обе стороны от центра. Такие участки называются палиндромами. Фрагмент и-РНК, синтезированный на таком участке, в последующем складывается вдвое в виде шпильки. Образование "шпильки" является сигналом для завершения синтеза и-РНК. У эукариот "шпильки" не образуются. Вероятно, терминация у них протекает иначе. Процессинг Процессинг включает целый ряд преобразований и-РНК, необходимых для ее нормального функционирования: 1. Образование колпачка (КЭПа) на фосфатном конце. Колпачок – это трифосфонуклеозид, содержащий гуанин. С помощью колпачка и-РНК отыскивает в цитоплазме малую субъединицу рибосомы. 2. Метилирование азотистых оснований. 3. Удаление части нуклеотидов на гидроксильном конце. 4. Присоединение на гидроксильном конце poli-А (100-200 остатков адениловой кислоты). Это образование выполняет стабилизирующую функцию и обеспечивает транспорт и-РНК из ядра в цитоплазму. 5. Сплайсинг – процесс удаления интронов и сшивания экзонов. Ядерная и-РНК является точной матрицей молекулы ДНК. Она содержит как экзоны, так и интроны, поэтому называется незрелой, или юной. После прохождения сплайсинга она становится зрелой. Сплайсинг присущ только эукариотам. Возможен также альтернативный сплайсинг: из одной и той же ядерной (незрелой) и-РНК вырезаются разные участки, в результате чего образуются разные зрелые и-РНК. Зрелая и-РНК имеет следующий вид: 5¢ 3¢ КЭП – 1 – АУГ – 2 – 3 – 4 – poli-A Здесь КЭП – "колпачок", 1 – лидирующий участок, АУГ – стартовый кодон, 2 – экзоны (их может быть много), 3 – кодон-терминатор, 4 – трейлер, poli-А – 100-200 остатков адениловой кислоты. Лидирующий участок взаимодействует в последующем с рибосомальной РНК, а трейлер определяет местоположение и-РНК в цитоплазме и продолжительность ее функционирования. Такая и-РНК выходит из ядра в цитоплазму, где осуществляется следующий этап – трансляция. Трансляция Трансляция – это процесс считывания информации с молекулы и-РНК на молекулу белка. Подобно транскрипции, трансляция протекает в три стадии: · инициация, · элонгация, · терминация. Инициация И-РНК своим кэпированным (фосфатным) концом отыскивает малую субъединицу рибосомы. Лидирующая последовательность соединяется с рибосомальной РНК. При этом стартовый кодон АУГ попадает в недостроенный пептидильный (П) участок рибосомы. (Как известно, в рибосоме имеется два активных участка: П – пептидильный и А – аминоацильный.) Далее к стартовому кодону присоединяется т-РНК, несущая аминокислоту метионин. Только после этого субъединицы рибосомы объединяются, и на этом инициация заканчивается. Элонгация Заключается в синтезе полипептида из свободных аминокислот, которые доставляются транспортными РНК. Аминокислота обязательно сначала должна попасть в аминоацильный центр – «центр узнавания». Скорость присоединения аминокислот у прокариот и эукариот разная: за одну секунду присоединяется две аминокислоты у эукариот и 16-17 – у прокариот. Терминация Терминация наступает тогда, когда в аминоацильный центр поступает один из трех кодонов-терминаторов – УАА, УАГ, УГА. Таким триплетам не соответствует ни одна аминокислота, поэтому они называются еще нонсенс-кодонами. К последней аминокислоте присоединяется вода, и карбоксильный конец полипептидной цепочки отсоединяется от рибосомы. На этом синтез белка завершается. Поскольку у про- и эукариот принципиальной разницы в механизме биосинтеза белка нет, то можно предположить, что данный механизм сформировался очень давно, еще до разделения клеток на два типа. Следует также иметь в виду, что в синтезе белка принимает участие множество факторов инициации, элонгации, терминации – как белковой, так и небелковой природы. 10) Принцип регуляции генной активности у прокариот (модель оперона) по типу репрессии и индукции. Впервые принцип регуляции на уровне транскрипции был установлен французскими учеными Ф. Жакобом и Ж. Моно в 1961 году. Свои исследования они проводили на кишечной палочке. Кишечная палочка при попадании в среду, содержащую молочный сахар лактозу, вырабатывает фермент лактазу. Если же лактозы нет, то фермент не вырабатывается. Модель оперон: функциональная система, состоящая из структурных и регуляторных генов. Принцип индукции: 1состяние лактоза- 1)на основе генорегулятора синтезируется белок-репрессор в активной форме 2)белок-репрессор присоединяется к оператору и блокирует путь РНК-полимеразе 3)фермент-лактаза не синтезируется 2состояние лактоза+ 1)лактоза связывается с белком-оепрессором и переводит его в неактивное состояние 2)белок-репрессор освобождает оператор 3)РНК-полимераза осуществляет транскрипцию и синтезируется иРНК 4)происходит трансляция и синтез фермента-лактазы 5)лактаза расщепляет лактозу, при этом белок-репрессор переходит в активное состояние (качественная регуляция) Принцип репрессии: 1. 1)на основе гена-регулятора синтезируеся белок-репрессор в неактивной форме 2)РНК-полимераза присоединяется с промотору, двигается по структурным генам и синтезирует иРНК 3)иРНК поступает на рибосомы и синтезируются белки-ферменты 4)ферменты действуют на субстрат, идет биохимическая реакция 2. 1)как только накапливается определенное количество продуктов биохимической реакции, они связываются с белком-репрессором и переводят его в активную форму 2)активный белок-репрессор присоединяется к оператору и блокирует путь РНК-полимеразе. Транскрипция не происходит и ферменты не синтезируются 3)как только все продукты реакции будут использованы белок-репрессор становится неактивным. (количественная регуляция) 11) Особенности регуляции генной активности у прокариот и эукариот У эукариот принцип оперонной регуляции не обнаружен. Регуляция осуществляется на всех этапах биосинтеза белка(транскрипции,процессинга,трансляции) На стадии транскрипции:1)активность каждого гена у них регулируется несколькими генами-регуляторами,кодирующими,соответственно,несколько регуляторныз белком. Эти белки связываются с определенными участкаи в молекуле ДНК. Один из таких участко находится перед промотором и называется препромотоным элементом; другие области лежат вдали от промотора и носят название энхенсеров(усилителе) и глушителей. В результате связывания регуляторных белко с этими участками происходит включение и выключение структурных генов.2)система выработки регуляторных белков-«многоэтажная). Главные регуляторные белки отвечают за выработку второстепенных.3)важная роль в регуляторных процессах принадлежит также гормонам(часто они являются индукторами транскрипции) и 4)белками гистоновой природны На стадии процессинга:осуществляется альтернативный сплайсинг и контроль за матричным РНК На стадии трансляции:отсутствие или наличие факторов трансляции 12) Репарация генетического материала: дорепликативная, пострепликативная и SOS-репарация. Мутации, связанные с нарушением репарации. (1)Световая дорепликативная репарация – это устранение повреждений, возникших под действием УФ. Протекает только на свету. УФ вызывает образование в ДНК тиминовых димеров: Ц – А – Т – А – Г – Т – Т – А – Г Г – Т – А – Т – Ц – А – А – Т – Ц Возникает дополнительная связь между нуклеотидами одной цепи и разрыв между нуклеотидами разных цепей. Под действием квантов видимого света в клетке образуется фермент, который восстанавливает нарушенные связи (1)Темновая дорепликативная репарация происходит и на свету, и без света. Способна устранять повреждения, вызванные любым видом мутагена. Условно в ней выделяют 5 фаз: · узнавание; · надрезание (надсекается ферментом); · вырезание; · синтез (новой цепи); · сшивание вновь синтезированного участка с концами неповрежденной ДНК. У человека есть рецессивная мутация, в основе которой – неспособность клеток устранять димеры, образованные под действие УФ. Она проявляется как пигментная ксеродерма. Пострепликативная репарация (2) наблюдается в синтетический период интерфазы. Во время репликации ДНК участки с димерами не реплицируются, поэтому вновь синтезированная нить содержит бреши. Потом они заполняются путем рекомбинантного синтеза с неповрежденной молекулой ДНК. SOS- репарация (3) происходит, если молекула ДНК сильно разрушена. Тогда нить строится из первых попавшихся нуклеотидов, исходная структура ДНК не восстанавливается. 13) Основное содержание и значение периодов жизненного цикла клетки Жизнь клетки от момента ее возникновения в результате деления материнской клетки до ее собственного деления или смерти называется жизненным циклом клетки. Жизненный цикл включает: рост,дифференцировку,вып ф-ий, деление,период покоя Митоз является универсальным способом размножения соматических клеток. Митотический цикл – это период жизни клетки от одного митоза до другого. В среднем 10% цикла занимает собственно митоз, а 90% – интерфаза. 69 Чем короче интерфаза, тем выше митотическая активность. Высокой митотической активностью обладают молодые малодифференцированные клетки. В их названиях нередко фигурирует приставка пре- и окончание - бласт (например: премиобласты, преодонтобласты, преэнамелобласты и др.). Интерфаза состоит из пресинтетического (G1), синтетического (S) и премитотического (G2) периодов и знаменуется подготовкой клетки к функционированию или очередному митотическому делению (М). ● G1 - пресинтетический период (основное содержание) ► Клетка восстанавливает количество органелл и ядерно-цитоплазматическое отношение. 70 ► Клетка синтезирует РНК и ферменты, необходимые для удвоения ДНК в S - периоде интерфазы. ► Клетка растет за счет интенсивных синтезов структурных белков, а также накопления включений и достигает размеров материнской клетки до ее деления. ► В ядре преобладает эухроматин. ► Клетка может стареть и подвергнуться апоптозу (естественной запрограммированной смерти). ► В конце пресинтетического периода выделяют точку рестрикции (R), пройдя которую клетка обязательно войдет в синтетический период. ► Продолжительность периода (G1) для различных клеток неодинаков – он может длиться от нескольких часов до нескольких суток. ♦ В некоторых случаях клетка не преодолевает точку рестрикции. В этой ситуации может быть два основных варианта дальнейшей судьбы клетки: ▬ если это стареющая клетка, то она подвергнется апоптозу - генетически запрограммированной смерти. ▬ если это молодая дифференцирующаяся клетка, то она перейдет в G0 период (период репродукционного покоя) ● G0 - период репродукционного покоя (основное содержание) ► Дифференцировка клеток, которые на этот период утрачивают способность к делению; ► Клетки приобретают статус высокодифференцированных неделящихся клеток (например: нейроны, сократительные кардиомиоциты, одонтобласты – клетки зубного дентина). Могут полиплоидизироваться (кратное увеличение количества ДНК и хромосом без нарушения кариолеммы) 71 ► Клетки активно функционируют и восстанавливают свою структуру внутриклеточно без пролиферации, т.е. путем внутриклеточной регенерации. ► Высокодифференцированные клетки стареют и подвергается апоптозу (генетически запрограммированная физиологическая смерть). ► Некоторые клетки возвращаются в митотический цикл (например: клетки печени) в синтетический период. ● S - синтетический и G 2 - премитотический периоды (основное содержание) ► Эти периоды характеризуются последовательной подготовкой клетки к митотическому делению. Она снижает свою функциональную активность. ► В S – периоде (8 – 12 часов) в ядре происходит редубликация ДНК, удвоение числа хромосом, в цитоплазме – удвоение центриолей. ► В G2 периоде (2 – 4 часа ) имеет место увеличение количества свободных рибосом, активизируется синтез тубулиновых белков и РНК, запасается АТФ на митохондриях. Б.1.1.2. Митоз – универсальный способ деления всех эукариотических соматических клеток. ► Длится 30 – 60 мин. ► Протекает преимущественно ночью в четыре последовательные фазы: профаза, метафаза, анафаза и телофаза. ► В профазу происходит формирование и спирализация хромосом, исчезновение ядрышек, распад кариолеммы на отдельные фрагменты и превращение их в мелкие мембранные пузырьки. 72 ► В ходе метафазы и анафазы происходит разделение, а также равномерное распределение хромосом и, следовательно, всего генетического материала между полюсами делящейся клетки. ► Телофаза завершается формированием двух дочерних ядер по полюсам веретена деления и цитотомией - разделением цитоплазмы бывшей материнской клетки. В результате образуются две дочерние генетически и структурно идентичные диплоидные клетки, каждая из которых вступает в свою интерфазу. ► Обе клетки вступают в пресинтетический период интерфазы. ► Если цитотомии не произошло, то образуется двуядерная, а в некоторых случаях и многоядерная клетка. Мейоз – способ деления клеток репродуктивных дифферонов, в результате которого образуются гаплоидные зрелые половые клетки (гаметы). ► Мейоз представляет собой два последовательных модифицированных митотических деления исходной диплоидной клетки. ► Между первым и вторым делениями имеет место редуцированная интерфаза без S – синтетического периода. ► Дочерние клетки - гаметы (сперматозоиды или яйцеклетки) получают 22 аутосомы и одну половую хромосому. ► Гаметы больше не делятся, они предназначены для оплодотворения. 73 14) Митоз, его биологическое значение. Эндомитоз, политения Митоз, кариокинез, или непрямое деление,— универсальный, широко распространенный способ деления клеток. При этом конденсированные и уже редуплицированные хромосомы переходят в компактную форму митотических хромосом, образуется веретено деления, участвующее в сегрегации и переносе хромосом (ахроматиновый митотический аппарат), происходит расхождение хромосом к противоположным полюсам клетки и деление тела клетки (цитокинез, цитотомия). Процесс непрямого деления клеток принято подразделять на несколько основных фаз: профаза, метафаза, анафаза, телофаза. Профаза. В ядре начинается и постепенно нарастает спирализация ДНК. Хромосомы укорачиваются, утолщаются, становятся видимыми, приобретают типичную двухроматидную структуру. Ядрышко постепенно исчезает. В цитоплазме вокруг каждой пары центриолей ориентируются микротрубочки, образуя центры веретена деления. Центриоли движутся к разным полюсам, микротрубочки вытягиваются вдоль оси клетки – начинается формирование ахроматинового веретена. Ядерная оболочка распадается на отдельные мелкие фрагменты. Хромосомы направляются к центру клетки. Метафаза занимает около трети времени всего митоза. Во время метафазы заканчивается образование веретена деления, а хромосомы выстраиваются в экваториальной п лоскости веретена, образуя так называемую метафазную пластинку хромосом, или материнскую звезду. Завершается формирование митотического веретена. Центриоли попарно располагаются на противоположных полюсах, а нити веретена от разных полюсов прикрепляются к центромере каждой хромосомы. Анафаза. Хромосомы все одновременно теряют связь друг с другом в области центромер и синхронно начинают удаляться друг от друга по направлению к противоположным полюсам клетки. Скорость движения хромосом равномерная, она может достигать 0,2— 0,5 мкм/мин. Анафаза — самая короткая стадия митоза (несколько процентов от всего времени), но за это время происходит ряд событий. Главным из них является обособление двух идентичных наборов хромосом и перемещение их в противоположные концы клетки. Телофаза начинается с остановки разошедшихся диплоидных (2n) наборов хромосом (ранняя телофаза) и кончается началом реконструкции нового интерфазного ядра (поздняя телофаза, ранний G1-период) и разделением исходной клетки на две дочерние (цитокинез, цитотомия). В ранней телофазе хромосомы, не меняя своей ориентации (центромерные участки — к полюсу, теломерные — к центру веретена), начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы образуется новая ядерная оболочка. После замыкания ядерной оболочки начинается формирование новых ядрышек. Клетка переходит в новый G1-период. Важное событие телофазы — разделение клеточного тела, цитотомия, или цитокинез, который происходит у клеток животных путем образования перетяжки в результате впячивания плазматической мембраны внутрь клетки. При этом в кортикальном, подмембранном слое цитоплазмы располагаются сократимые элементы типа актиновых фибрилл, ориентированные циркулярно в зоне экватора клетки. Сокращение такого кольца приведет к впячиванию плазматической мембраны в области этого кольца, что завершается разделением клетки перетяжкой на две. У растений в плоскости экватора клетки образуется мембранная перегородка, которая растет в стороны, достигая клеточной стенки. Биологическое значение митоза заключается в том, что в результате этого способа деления образуются клетки с наследственной информацией, которая качественно и количественно идентична информации материнской клетки. Эндомитоз- недоведенный до конца митоз, отсутсвие цитокинеза, образуются 2яд. Клетки, напр в печени. Политения -удвоение ДНК без увеличения числа хромосом и в результате образуются политенные хромосомы. В клетках увеличивается количество наследственной информации и следовательно повышается функциональная активность. 15) Размножение - основное свойство живого. Бесполое и половое размножение, их отличия. Классификация форм размножения. Партеногенез. Размножение – это способность организмов производить себе подобных представителей того же вида. В процессе размножения особи родительского поколения передают потомкам генетическую информацию, обеспечивающую воспроизведение у них как признаков конкретных родителей, так и вида, которому они принадлежат. Благодаря размножению осуществляется смена и материальная преемственность поколений. В ходе размножения создаются уникальные комбинации наследственного материала и закрепляются возникшие у отдельных особей наследственные изменения. Это обусловливает генетическое разнообразие особей в пределах вида и служит основой для изменчивости вида и дальнейшей его эволюции. Таким образом, размножение, а точнее осуществляемая в ходе размножений смена поколений, служит непременным условием поддержания во времени биологических видов и жизни как таковой. Обычно выделяют два основных типа размножения: бесполое и половое. Бесполое размножение осуществляется при участии лишь одной родительской особи. Особи дочернего поколения возникают из одной или группы клеток материнского организма. Деление надвое приводит к возникновению из одного родительского организма двух дочерних. Оно является преобладающей формой у прокариот и простейших, но встречается и у многоклеточных: продольное у медуз, поперечное у кольчатых червей .Множественное деление (шизогония ) встречается среди простейших, в том числе паразитов человека (малярийный плазмодий). При размножении почкованием потомок формируется первоначально как вырост на телё родителя (гидра). Фрагментаци я заключается в распаде тела многоклеточного организма на части, которые далее превращаются в самостоятельных, особей (плоские черви, иглокожие), У видов, размножающихся спорами, дочерний организм развивается из специализированной клетки-споры – мелкая гаплоидная клетка, покрытая плотной оболочкой и устойчивая к действию неблагоприятных факторов внешней среды. В случае вегетативного размножения формирование нового организма происходит из группы клеток материнского организма. Оно распространено среди растений, у которых оно происходит за счет частей вегетативных органов или специально предназначенных для этой цели структур – луковиц, корневищ, клубней и др. Бесполое размножение наблюдается у животных с относительно низким уровнем структурно-физиологической организации, к которым принадлежат многие паразиты человека. У паразитов бесполое размножение не только служит увеличению численности особей, но способствует расселению, помогает пережить неблагоприятные условия. ПОЛОВОЕ РАЗМНОЖЕНИЕ Хотя в процессе развития жизни бесполое размножение возникло первым, половое размножение существует на Земле уже более 3 млрд. лет. Оно обнаруживается в жизненных циклах всех основных групп организмов. Распространенность полового размножения объясняется тем, что оно обеспечивает значительное генетическое разнообразие и, следовательно, фенотипическую изменчивость потомства. Этим достигаются большие эволюционные и экологические (расселение) возможности. В основе полового размножения лежит половой процесс, суть которого сводится к объединению в наследственном материале для развития потомка генетической информации от двух разных источников — родителей. Представление о половом процессе дает явление конъюгации, например инфузорий. Он заключается во временном соединении двух особей с целью обмена (рекомбинаций) наследственным материалом. В результате появляются особи, генетически отличные от родительских организмов. В дальнейшем они осуществляют бесполое размножение. Поскольку количество инфузорий после конъюгации остается неизменным. У простейших половой процесс может осуществляться в виде копуляции, которая заключается в слиянии двух особей в одну, объединении и рекомбинации наследственного материала. Далее такая особь размножается - делением. На определенном этапе эволюции у многоклеточных организмов половой процесс как способ обмена генетической информацией между особями в пределах вида оказался связанным с размножением. Для участия в половом размножении в родительских организмах вырабатываются гаметы —клетки, специализированные к обеспечению генеративной функции. Слияние материнской и отцовской гамет приводит к возникновению зиготы — клетки, представляющей собой дочернюю особь на первой, наиболее ранней стадии индивидуального развития. У некоторых организмов зигота образуется в результате объединения гамет, не отличимых по строению. В таких случаях говорят об изогамии. У большинства видов по структурным и функциональным признакам половые клетки делятся на материнские (яйцеклетки) и отцовские (сперматозоиды). Как правило, яйцеклетки и сперматозоиды вырабатываются разными организмами — женскими (самки) и мужскими (самцы). Образование гамет обоих видов в одном организме, имеющем и мужскую, и женскую половые железы, называют гермафродитизмом. Гермафродитизм характерен для некоторых паразитов человека, например плоских червей. Несмотря на продукцию гермафродитами и мужских, и женских гамет, самооплодотворение для них нетипично, что связано обычно с несовпадением времени созревания яйцеклеток и сперматозоидов. Истинный гермафродитизм описан у человека. Чаше он развивается в результате нарушения эмбриогенеза при одинаковом наборе половых хромосом XX ИЛИ XV во всех соматических клетках. У некоторых людей-гермафродитов обнаружен мозаицизм по половым хромосомам. Одни соматические клетки имеют пару XX, другие —XV. Хотя оплодотворение представляет собой характерный признак полового размножения, дочерний организм иногда развивается из неоплодотворенной яйцеклетки. Это явление называют девственным развитием ИЛИ партеногенезом. Источником наследственного материала для развития потомка в этом случае обычно служит ДНК яйцеклетки — гиногенез. Реже наблюдается андрогенез — развитие потомка из клетки с цитоплазмой ооцита и ядром сперматозоида. Ядро женской гаметы в случае а ндрогенеза погибает. Естественный партеногенез у ряда растений, червей, насекомых, ракообразных. Факультативный – у пчел, муравьев, коловраток (из оплодотворенных яиц –самки, из неоплодотворенных – самцы). Обязательный партеногенез является измененной формой полового размножения в эволюции некоторых видов животных. У пчел, например, он используется как механизм генотипического определения пола: женские особи (рабочие пчелы и царицы) развиваются из оплодотворенных яйцеклеток, а мужские (трутни) — партеногенетически. Партеногенез включен в жизненные циклы многих паразитов Он обеспечивает быстрый рост численности особей в условиях, затрудняющих встречу партнеров противоположного пола. Партеногенез может быть вызван искусственно разнообразными воздействиями: химическими, механическими, термическими и др. (Тихомиров, развитие неоплодотворенных яиц тутового шелкопряда, раздражая их тонкой кисточкой или обрабатывая в течение нескольких секунд серной кислотой) 16) Мейоз. Особенности первого и второго деления мейоза. Биологическое значение. Мейоз — своеобразный способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Мейоз является центральным звеном гаметогенеза у животных и спорогенеза у растений. Мейоз состоит из двух последовательных делений, которым предшествует однократная редупликация ДНК. Все вещества и энергия, необходимые для осуществления обоих делений, запасаются в ходе предшествующей мейозу интерфазы I. Интерфаза II практически отсутствует, и деления быстро следуют одно за другим. В каждом из делений мейоза различают те же четыре стадии: профазу, метафазу, анафазу и телофазу, которые характерны для митоза, но отличаются рядом особенностей. Первое мейотическое деление (мейоз I) приводит к уменьшению вдвое числа хромосом и называется редукционным. В результате из одной диплоидной клетки (2n4с) образуются две гаплоидные (n2с) клетки. Профаза I мейоза наиболее продолжительна и сложна. Помимо типичных для профазы митоза процессов спирализации ДНК и образования веретена деления в профазе I происходят два исключительно важных в биологическом отношении события: конъюгация, или синапсис, гомологичных хромосом и кроссинговер. Конъюгация — это процесс тесного сближения гомологичных хромосом. В результате конъюгации образуются хромосомные пары, или биваленты, числом п. Так как каждая хромосома, вступающая в мейоз, состоит из двух хроматид, то бивалент содержит четыре хроматиды. Формула генетического материала в профазе I остается 2«4а К концу профазы хромосомы в бивалентах, сильно спирализуясь, укорачиваются. Так же как в митозе, в профазе I мейоза начинается формирование веретена деления, с помощью которого хромосомный материал будет распределяться между дочерними клетками (рис. 5.5). Процессы, происходящие в профазе I мейоза и определяющие его результаты, обусловливают более продолжительное течение этой фазы деления по сравнению с митозом и дают возможность выделить несколько стадий в ее пределах (рис. 5.5). Лептотена — наиболее ранняя стадия профазы I мейоза, в которой начинается спирализация хромосом, и они становятся видимыми в микроскоп как длинные и тонкие нити. Зиготена характеризуется началом конъюгации гомологичных хромосом, ко-торые объединяются синаптонемальным комплексом в бивалент ((рис. 5.6). Пахитена — стадия, в которой на фоне продолжающейся спирализации хромосом и их укорочения, между гомологичными хромосомами осуществляется кроссинговер — перекрест с обменом соответствующими участками. Диплотена- характеризуется возникновением силотталкивания между гомологичными хромосомами, которые начинают отделяться друг от друга в первую очередь в области центромер, но остаются связанными в областях прошедшего кроссинговера – хиазмах. Диакинез – завершающая стадия профазы 1 мейоза, в которой гомологичные хромосомы удерживаются вместе лишь в отдельных точках хиазм, приобретая причудливую форму колец, крестов, восьмерок и т. д. Таким образом, несмотря на возникающие между гомологичными хромосомами силы отталкивания, в, профазе I не происходит окончательного разрушения бивалентов. В метафазеI мейоза завершается формирование веретена деления, биваленты устанавливаются на плоскости экватора клетки. Нити веретена с одного полюса прикрепляются к центромере каждой хромосомы. В анафазе I мейоза под действием нитей веретена гомологичные хромосомы отходят друг от друга, направляясь к противоположным полюсам клетки. В результате у каждого из полюсов клетки формируется гаплоидный набор хромосом, содержащий по одной двухроматидной хромосоме из каждой пары гомологичных хромосом. В анафазе I хромосомы разных пар, т.е. негомологичные хромосомы, ведут себя совершенно независимо друг от друга, обеспечивая образование самых различных комбинаций отцовских и материнских хромосом в гаплоидном наборе будущих гамет. Число таких комбинаций соответствует формуле 2n, где n— число пар гомологичных хромосом, у человека эта величина равна 223, т.е. 8,4 • 106 вариантов сочетаний отцовских и материнских хромосом возможно в гаметах человека. Итак, расхождение гомологичных хромосом в анафазе I мейоза обеспечивает не только редукцию числа хромосом в будущих половых клетках, но и огромное разнообразие последних в силу случайного сочетания отцовских и материнских хромосом разных пар. В телофазе I мейоза происходит формирование клеток, ядра которых имеют гаплоидный набор хромосом и удвоенное количество ДНК, поскольку каждая хромосома состоит из двух хроматид. Клетки, образующиеся в результате первого мейотического деления, имеют формулу п2с и после короткой интерфазы приступают к следующему делению. Второе мейотическое деление (мейоз II) протекает как типичный митоз, но отличается тем, что вступающие в него клетки содержат гаплоидный набор хромосом. В результате такого деления n двухроматидных хромосом (п2с), расщепляясь, образуют п однохроматидных хромосом (пс). Такое деление называют эквационным (или уравнительным). Таким образом, после двух последовательных мейотических делений из одной клетки с диплоидным набором двухроматидных хромосом (2пАс) образуются четыре клетки с гаплоидным набором однохроматидных хромосом (пс). Биологическое значение мейоза заключается в образовании клеток с редуцированным набором хромосом и поддержании постоянства кариотипа в ряду поколений организмов, размножающихся половым путем. Мейоз служит основой комбинативной изменчивости, обеспечивая генетическое разнообразие гамет благодаря процессам кроссинговера, расхождения и комбинаторики отцовских и материнских хромосом. Изменения структуры хромосом вследствие неравного кроссинговера, нарушение расхождения всех или отдельных хромосом в анафазе I и II мейотических делений приводят к образованию аномальных гамет и могут служить основой гибели организма или развития у потомков ряда хромосомных синдромов 17) Оогенез, определение, схема. Цитологическая и цитогенетическая характеристика. Процесс образования яйцеклеток. 1. Период размножения, интенсивно делятся овогонии – мелкие клетки с относительно крупным ядром и небольшим количеством цитоплазмы. У млекопитающих и чел-ка заканчивается до рождения. Формируются первичные овоциты.2n2c 2.С наступлением половой зрелости часть из них периодически вступают в период роста – увеличиваются, в них накапливаются желток, жир, пигменты. В цитоплазме, органоидах и мембране – сложные биохимические преобразования. Овоцит I окружается фолликулярными клетками (обесп. питание). 2n4c 3. Период созревания. 2 последовательных деления, связанные с преобразованием хромосомного аппарата (мейоз). Неравномерное разделение цитоплазмы. Образуется овоцит II (почти вся цитоплазма) и 3 полоцита (редукционные тельца).1n2c. Из овоцита II формируется овотида. 1n1c. Затем из овотиды формируется яйцеклетка 18) Сперматогенез, схема. Цитологическая и цитогенетическая характеристика Сперматогенез - это развитие и формирование мужских половых клеток. Сперматогенез протекает в извитых канальцах семенников, и его средняя продолжительность от 68 до 75 суток. Сперматогенез у человека начинается с момента полового созревания и продолжается в течение всего активного полового периода в больших количествах. Стадии сперматогенеза: · размножение; · рост; · созревание-деление; · формирование. Стадия размножения. Начальной фазой сперматогенеза является размножение сперматогоний путем митоза, большая часть клеток продолжает делиться, а меньшая часть вступает в стадию роста. В этот период клетки растут, накапливают питательные вещества, и на стадии роста превращаются в сперматоциты 1-го порядка. Следующая фаза созревание-деление, характеризуется двумя редукционными делениями, без интерфазы. В результате 1-го деления 1 сперматоцит 1-го порядка дает начало 2-м сперматоцитам 2-го порядка, а 2-ое деление-созревание приводит к появлению 4 сперматид. Фаза формирования происходит в присутствии тестостерона, происходит преобразование сперматид в сперматозоиды. Ядро сперматиды приобретает видоспецифическую форму, хроматин конденсируется. Комплекс Гольджи мигрирует к верхушке головки сперматозоида и образует чехлик и акросому. Центриоли идут к противоположному полюсу, проксимальная центриоль образует колечко в области шейки, а дистальная центриоль дает начало аксонемме - осевой нити сперматозоида. Митохондрии укладываются в промежуточной части хвостика. Микрофиламенты окружают аксонемму в главном отделе хвостика, терминальный отдел хвостика представляет собой ресничку. Акросома содержит сперматолизины (трипсин, гиалуронидаза). Сперматозоиды - это мелкие, подвижные клетки, размером 30-60 мкм. В сперматозоиде различают головку и хвост. Головка сперматозоида имеет овоидную форму и включает в себя небольшое плотное ядро, окруженное тонким слоем цитоплазмы. Ядра сперматозоидов характеризуются высоким содержанием нуклеопротаминов и нуклеогистионов. Передняя половина ядра покрыта плоским мешочком, составляющим "чехлик" сперматозоида. В нем у переднего полюса располагается акросома. Чехлик и акросома являются производными комплекса Гольджи. Акросома содержит набор ферментов, среди которых важное место принадлежит гиалуронидазе и протеазам, способным растворять оболочки, покрывающие яйцеклетку. За головкой имеется кольцевидное сужение. Головка так же, как и хвостовой отдел, покрыта клеточной мембраной. Хвостовой отдел сперматозоида состоит из связующих, промежуточных, главной и терминальной частей. В связующей части или шейке располагаются центриоли - проксимальная и дистальная, от которой начинается осевая нить (аксонема). Промежуточная часть содержит 2 центральных и 9 пар периферических микротрубочек, окруженных расположенными по спирали митохондриями. Именно митохондрии обеспечивают энергией двигательную активность сперматозоидов, нарушение которой нередко связано с поражением процесса энергообразования в митохондриях. Главная часть по строению напоминает ресничку. Она окружена тонким фибриллярным влагалищем. Терминальная, или конечная часть содержит единичные сократительные филаменты. Date: 2016-07-22; view: 1106; Нарушение авторских прав |