Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Функции плазмолеммы.





1)защитно-барьерная

2)рецепторно-сигнальная

3)каталитическая(ферментативная)

4)образование цитоскелета

5)образование межклеточных контактов

6)транспортная (1транспорт сквозь мембрану:пассивный,активный;2транспорт в мембранной упаковке:эндоцитоз, экзоцитоз)

Цитоплазма

Цитоплазма, отделенная от окружающей среды плазмолеммой, включает в себя г иалоплазму, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различ­ные непостоянные структуры — включения.

Гиалоплазма

Гиалоплазма — водный раствор органических и неорганических веществ, способный изменять свою вязкость и находящийся в постоянном движении. Гиалоплазма способна переходить из более твердого состояния (гель) в более жидкое (золь). В растительных клетках гиалоплазма способна к движению – циклоз (круговой и струйчатый)

Функции: 1) обьединяет все компоненты клетки в единую систему

2)обеспечивает транспорт органелл, веществ, газов внутри клетки

3)служит местом для протекания химических реакций

Ядро клетки — система генетической детерминации и регуляции белкового синтеза. Форма ядра округлая, овальная, шаровидная, иногда сегментирована. В клетке может содержаться от 1 до нескольких ядер. Ф:хранение,реализация,передача насл.инф, контроль всех биохимических процессов в клетке, контроль процесса роста, развития и старения клетки

Состоит из:

1)кариолемма: имеет 2 мембраны:наружная соединяется с каналапи ЭПС. Между наружной и внутренней мембранами расстилается околоядерное пространство. Оболочка пронизана порами, в которых находятся белки, регулирующие транспорт веществ из ядра и в ядро.

2)кариолемма – коллоидный раствор, напоминающий гиалоплазму, но более кислый и содержащий больше ферментов(связующая, место для протекания хим реакции(редупликация ДНК, транскрипция)

3)хроматин –форма существования интерфазных хромосом. Хим состав: ДНК, белки(гистоновые, негистоновые), РНК, у/в, липиды, ионы металлов. Функция: хранение, реализация и передача наследственной информации.

4)ядрышко-небольшое округлое тельце, интенсивно окрашивающееся и обнаруживающееся в ядрах неделящихся клеток. Ф: синтех рРНК и соединение их с белками, т.е сборка субчастиц рибосом

4) Особенности морфологического и функционального строения хромосом. Гетеро - и эухроматин. Характеристика кариотипа человека в норме.

При наблюдении живых или фиксированных клетоквнутри ядра выявляются зоны плотного вещества, которые хорошо воспринимают разные красители, особенно основные. Благодаря такой способ­ности хорошо окрашиваться этот компонент ядра и получил назва­ние “хроматин”. В составхроматина входит ДНК в комплексе с белком. Такими же свойствами

обладают и хромосомы, которые отчетливо видны во время митотического деления клеток. В неделящихся (интерфазных) клетках хроматин, выявляемый в световом микроскопе, может более или менее равномерно заполнять объем ядра или же располагаться отдельными глыбками.

Хроматин интерфазных ядер представляет собой хромосомы, которые, однако, теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной. Зоны полной деконденсации и их участков морфологи называют эухроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина, иногда называемого гетерохроматином. Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных хромосом. В этот период хромосомы не выполняют никаких синтетических функций, в них не происходит включения предшественников ДНК и РНК.

Таким образом, хромосомы клеток могут находиться в двух струк­турно-функциональных состояниях: в активном, рабочем, частично или полностью деконденсированном, когда с их участием в интер­фазном ядре происходят процессы транскрипции и редупликации, и в неактивном, в состоянии метаболического покоя при максималь­ной их конденсированности, когда они выполняют функцию распре­деления и переноса генетического материала в дочерние клетки.

В хромосомах существует множество мест независимой репликации ДНК — репликонов. ДНК эукариотических хромосом представ­ляют собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Синтез ДНК как на участках отдельной хромосомы, так и среди разных хромосом идет неодновременно, асинхронно. Так, например, в некоторых хромосомах че­ловека (1, 3, 16) репликация наиболее интенсивно начинается на концах хромосом и заканчивается (при высокой интенсивности включения метки) в центромерном районе. Наиболее поздно репликация заканчивается в хромосомах или в их участках, находящихся в компактном, конденсированном состоянии. Таким примером может являться поздняя репликация генетически инактивированной Х-хромосомы у женщин, формирующей в клеточном ядре компактное тельце полового хроматина. Диплоидный набор хромосом клетки, характеризующийся их числом, величиной и формой, называется кариотипом (греч. karyon — ядро, typhe— форма). Этот термин введен в 1924 г. советским цитологом Г. А. Левитским. Нормальный кариотип человека включает 46 хромосом, или 23 пары; из них 22 пары аутосом и одна пара — половых хромосом (гетерохро­мосом).

Для изучения кариотипа человека обычно используют клетки костного мозга и культуры фибробластов или лейкоцитов периферической крови, так как эти клетки легче всего получить. При приготовлении препаратов хромо-1 сом к культуре клеток добавляют колхицин, останавливающий деление кле­ток на стадии метафазы. Затем клетки обрабатывают гипотоническим рас­твором, отделяющим хромосомы друг от друга, после чего их фиксируют и окрашивают.

Благодаря такой обработке каждая хромосома четко видна в световом микроскопе. Длина хромосом колеблется,от 2,3 до 11 мкм.

Для того чтобы легче было разобраться в сложном комплексе хромосом, составляющем кариотип, их располагают в виде и д и о г р а м м ы (от греч. idios— своеобразный, gramme— запись). Составление идиограмм, как и сам термин, предложено советским цитологом С. Г. Навашиным (1857---1930). В идиограмме хромосомы располагаются попарно в порядке убывающей величины (рис. 15). Исключение делается для половых хромосом, которые выделяются особо. Наиболее крупной паре хромосом присвоен № 1, сле­дующей — № 2 и т. д. Самая маленькая пара хромосом человека № 22. Как видно на идиограмме, пару половых хромосом женщины составляют две одинаковые крупные хромосомы, названные Х-хромосомами. У мужчин одна Х-хромосома такая же, как у женщин, а 'другая"— гораздо меньшая, У-хромосома.

Идентификация хромосом только по величине встречает большие затруднения: ряд хромосом имеет сходные размеры. Однако в последнее время разработаны новые методики для анализа хромосом: использование флюоресцент­ных красителей, окрашивание хромосом после специальной обработки краской Гимзы (названной так по имени автора) и применение других красителей., Ними методами установлена четкая дифференцировка хромосом человека по их длине на красящиеся специальными методами и не красящиеся поло­сы. Рисунок этих полос строго специфичен, индивидуален для каждой пары хромосом (рис. 16). Умение точно дифференцировать хромосомы имеет боль­шое значение для медицинской генетики, так как позволяет точно установить характер нарушений в кариотипе пациента.

Постоянство числа, индивидуальность и сложность строения, авторепродукция и непрерывность в последовательных генерациях клеток говорят о большой биологической роли хромосом. Действительно хромосомы являются носителями наследственной информации (см. главу VI).

Выяснено, что наследственная информация дискретна, ее составляют многочисленные гены, расположенные вдоль хромосом в линейном по­рядке. Каждый ген занимает постоянное, определенное место (л о к у с) в определенной хромосоме.

Гомологичные хромосомы имеют один и тот же набор генетических локусов, поэтому взаимозаменяемы. Негомологичные хромосомы имеют раз­личные наборы генетических локусов, поэтому взаимонезаменяемы. Генети­ческая информация, необходимая для развития организма, содержится толь­ко в полном комплекте всех негомологичных хромосом (т. е. в полном гапло­идном наборе хромосом).

5) Особенности строения генов у про- и эукариот. Строение хромосом в разные периоды жизненного цикла клетки.

Date: 2016-07-22; view: 459; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.011 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию