Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Универсальные и импульсные диоды
Универсальные (высокочастотные) диоды применяются для преобразования высокочастотных сигналов. Импульсные полупроводниковые диоды предназначены преимущественно для работы в и импульсных режимах (преобразования импульсных сигналов). Эти диоды характеризуются минимальными значениями реактивных параметров, что достигается благодаря специальным конструктивно-технологическим мерам. Одна из основных причин инерционности полупроводниковых диодов связана с диффузионной емкостью (см. § 3.7, 3.8). Для уменьшения времени жизни Разновидностью универсальных диодов является диод с короткой базой. В таком диоде протяженность базы меньше диффузионной длины неосновных носителей. Следовательно, диффузионная емкость будет определяться не временем жизни неосновных носителей в базе, а фактическим меньшим временем нахождения (временем пролета). Однако осуществить уменьшение толщины базы при большой площади р-n-перехода технологически очень сложно. Поэтому изготовляемые диоды с короткой базой при малой площади являются маломощными. В настоящее время широко применяются диоды с p-i-n-структурой, в которой две сильнолегированные области р- и n-типа разделены достаточно широкой областью с проводимостью, близкой к собственной (i-область). Заряды донорных и акцепторных ионов расположены вблизи границ i -области. Распределение электрического поля в ней в идеальном случае можно считать однородным (в отличие от обычного p-n-перехода). Таким образом, i -область с низкой концентрацией носителей заряда, но обладающей диэлектрической проницаемостью можно принять за конденсатор, «обкладками» которого являются узкие (из-за большой концентрации носителей в р - и n -областях) слои зарядов доноров и акцепторов. Барьерная емкость p-i-n -диода определяется размерами i -слоя и при достаточно широкой i-области от приложенного постоянного напряжения практически не зависит. Особенность работы р-i-n -диода состоит в том, что при прямом напряжении одновременно происходит инжекция дырок из p-области и электронов из n-области в i-область. При этом его прямое сопротивление резко падает. При обратном напряжении происходит экстракция носителей из i -области в соседние области. Уменьшение концентрации приводит к дополнительному возрастанию сопротивления i-области по сравнению с равновесным состоянием. Поэтому для p-i-n -диода характерно очень большое отношение прямого и обратного сопротивлений, что важно при использовании их в переключательных режимах. В качестве высокочастотных универсальных диодов используются структуры с барьерами Шотки и Мотта. В этих приборах процессы прямой проводимости определяются только основными носителями заряда. Таким образом, у рассматриваемых диодов отсутствует диффузионная емкость, связанная с накоплением и рассасыванием носителей заряда в базе, что и определяет их хорошие высокочастотные свойства. Отличие барьера Мотта от барьера Шотки состоит в том, что тонкий i-слой создан между металлом М и сильно легированным полупроводником
Разновидностью импульсных диодов являются диоды с накоплением заряда (ДНЗ) или диоды с резким восстановлением обратного тока (сопротивления). Импульс обратного тока в этих диодах имеет почти прямоугольную форму (рис. 4.2). При этом значение Получение малой длительности Варикапы Варикапом называется полупроводниковый диод, используемый в качестве электрически управляемой емкости с достаточно высокой добротностью в диапазоне рабочих частот. В нем используется свойство р-n- перехода изменять барьерную емкость под действием внешнего напряжения.
Значение добротности варикапа на низких частотах на высоких частотах – Температурный коэффициент емкости Для увеличения добротности варикапа используют барьер Шотки; эти варикапы имеют малое сопротивление потерь, так как в качестве одного из слоев диода используется металл. Добротность колебательной системы характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше добротность колебательной системы, тем меньше потери энергии в ней за период. Основное применение варикапов – электрическая перестройка частоты колебательных контуров. Зависимость его емкости от напряжения отражает вольт-фарадная характеристика, подобная зависимости барьерной емкости p-n -перехода от приложенного к нему обратного напряжения. В настоящее время существует несколько разновидностей варикапов, применяемых в различных устройствах непрерывного действия. Это параметрические диоды, предназначенные для усиления и генерации СВЧ-сигналов, и ум-ножительные диоды, предназначенные для умножения частоты в широком диапазоне частот. Иногда в умножительных диодах используется и диффузионная емкость. Date: 2016-07-18; view: 454; Нарушение авторских прав |