Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основные части электрических машин. Реакция якоря





 

Электрические машины общего применения обычно имеют цилиндрическую форму и снабжены приливами для установки на фундамент или фланцами для крепления.

Тяговые электрические машины имеют те же основные части, но их конструкция приспособлена к особенностям установки этих машин на локомотивах.

Основными частями машины постоянного тока являются: остов (станина), полюсы, якорь, щёточный аппарат и некоторые вспомогательные детали, служащие для конструктивного оформления машины.

Остов (станина). Неподвижная часть машины – остов отливается из стали. Он составляет часть магнитной системы машины и служит для укрепления полюсов с катушками и выводных зажимов, а также для поддержания боковых щитов, несущих подшипники якоря.

Остовы тяговых генераторов тепловозов имеют цилиндрическую форму и снабжены двумя приливами для установки генератора на общую с дизелем раму. Остовы тяговых двигателей обычно выполняют восьмигранными или цилиндрическими. В них имеются приспособления для монтажа двигателя на тележке, люки для осмотра коллектора и щеток, отверстия для подвода и выхода наружу охлаждающего воздуха и пр. Внутри остова предусмотрены обработанные приливы для установки полюсов, обеспечивающие строго симметричное расположение их на машине. В торцовых стенках остова имеются горловины для установки и крепления подшипниковых щитов.

Полюсы. В современных стационарных и тяговых машинах устанавливают главные и добавочные полюсы.

Главные полюсы, на которых расположены катушки обмотки возбуждения, служат для создания в машине магнитного потока возбуждения. Часть сердечника главного полюса со стороны, обращённой к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока по поверхности якоря.

Электрические машины могут иметь два, четыре, шесть и в общем случае главных полюсов.

Остов, полюсы и якорь составляют магнитную систему машины, через которую замыкается магнитный поток, созданный обмоткой возбуждения. Воздушный зазор между якорем и полюсами также является одним из участников магнитной цепи.

Добавочные полюсы обеспечивают уменьшение искрения, возникающего при работе машины (По своим размерам они меньше главных). Число добавочных полюсов обычно равно числу главных. В машинах постоянного тока сердечники добавочных полюсов изготавливают из стали. Они имеют монолитную конструкцию, так как значение индукции под добавочными полюсами выбирается обычно небольшим и при вращении якоря индуцирования вихревых токов в их наконечниках практически не происходит. Однако в тяговых двигателях электровозов переменного тока, работающих при пульсирующем напряжении, сердечники добавочных полюсов выполняют шихтованными - из изолированных листов электротехнической стали толщиной 0,5 мм. Этим обеспечивается существенное уменьшение вихревых токов, возникающих при прохождении по обмотке добавочных полюсов пульсирующего тока.

Якорь. Машина постоянного тока имеет якорь, состоящий из:

· сердечника;

· обмотки (уложенной в пазы якоря);

· коллектора – механического преобразователя переменного тока в постоянный и наоборот;

· вала.

 

Сердечник якоря собран из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого. Листы собирают в общий пакет, который насаживают на вал якоря. Пакет удерживается в сжатом состоянии нажимными шайбами.

Коллектор выполнен из отдельных пластин толщиной до 5-8 мм, изготовленных из твердотянутой меди или кадмиевой бронзы клинообразного сечения. Пластины изолируют одну от другой миканитовыми прокладками.

Щёточный аппарат – для соединения коллектора с внешней цепью.

Щётки предназначены для соединения коллектора с внешней цепью. Они представляют собой прямоугольные призмы шириной 4-32 мм. Рабочую поверхность щёток пришлифовывают к коллектору, чтобы обеспечить надежный контакт. Каждая щетка имеет определенную марку. Щётки различных марок различаются составом, способом изготовления и физическими свойствами. Щётки устанавливают в специальные обоймы, называемые щёткодержателями. Для отвода тока от щётки к ней прикрепляют медный гибкий проводник (щёточный канатик), который присоединяют к щёткодержателю.

Обмотки якоря

В современных машинах постоянного тока применяют барабанные якоря, в которых проводники обмотки укладывают в пазы на наружной поверхности цилиндрического якоря.

Обмотка якоря состоит из отдельных секций. Секцией называют часть обмотки, расположенную между двумя коллекторными пластинами, следующими одна за другой по ходу обмотки.

Обмотки якоря подразделяются на две основные группы: петлевые (параллельные) и волновые (последовательные).

 

Реакция якоря.

Воздействие поля якоря на магнитное поле машины называется реакцией якоря.

 

 

Рис.5.18. Распределение индукции в воздушном зазоре машины постоянного тока

а) от обмотки возбуждения; б) от обмотки якоря; в) результирующее магнитное поле

 

а) На холостом ходу (рис.5.18, а) магнитный поток создаётся только магнитодвижущей силой обмотки возбуждения 1. В этом случае магнитный поток возбуждения Фв , пронизывающий якорь 2, распределяется симметрично относительно продольной оси. Поток возбуждения направлен по продольной оси полюсов.

б) Магнитный поток возбуждения Фя, созданный током якоря, в двухполюсной машине при установке щёток на геометрической нейтрали, направлен по поперечной оси машины (рис. 5.18, б).

в) В результате действия потока якоря Фя симметричное распределение магнитного поля машины искажается и результирующий поток Фрез . оказывается сосредоточенным в основном у краёв главных полюсов (рис.5.18, в).

 
Вредные последствия реакции якоря:

1. Физическая нейтраль б-б (линия, соединяющая точки окружности якоря, в которых индукция равна нулю) смещается относительно геометрической нейтрали а-а на некоторый угол, что ухудшает коммутацию машины и приводит к искрению под щётками.

2. Результирующий магнитный поток Фрез при насыщении магнитной цепи уменьшается, т.е. уменьшается и э.д.с., индуцированная при нагрузке, по сравнению с э.д.с. при холостом ходе.

3. В кривой распределения результирующей индукции в воздушном зазоре возникают пики индукции Вmах под краями главных полюсов, способствующие образованию в машине кругового огня.

Уничтожение магнитного потока реакции якоря достигается с помощью компенсационной обмотки, уложенной в пазах сердечника главных полюсов и соединенной последовательно с обмоткой якоря. Эта обмотка создает магнитный поток, направленный против магнитного потока реакции якоря.

Контрольные вопросы

1. Из каких основных частей состоит машина постоянного тока?

2. Каково назначение и устройство коллектора?

3. Каково назначение щёток?

4. Что такое полюсный наконечник?

5. Какие элементы конструкции составляют магнитную систему машины?

6. Каково назначение полюсного наконечника?

7. Что такое реакция якоря?

8. Как реакция якоря влияет на работу машин постоянного тока?

9. Как уменьшить влияние якоря?

 

5.4. Коммутация и способы её улучшения

 

Под коммутацией понимают все явления и процессы, возникающие под щётками при работе коллекторных электрических машин. Если щётки искрят, то говорят, что машина имеет плохую коммутацию. Если искрение отсутствует, то коммутацию называют хорошей. Качество коммутации в значительной степени определяет работоспособность машины и её надёжность в эксплуатации.

При вращении якоря, каждая секция его обмотки, проходя через нейтраль, меняет свое положение под полюсами и переходит из одной параллельной ветви в другую. При этом секции закорачиваются щёткой, и в них резко изменяется направление тока.

Процесс переключения секций обмотки якоря из одной параллельной ветви в другую и изменения в них тока, называется процессом коммутации.

Щётки, установленные на коллекторе, разбивают обмотку якоря на параллельные ветви. Предположим, что в какой-либо момент секция 1 (рис. 5.19.а) находится в нижней параллельной ветви, при этом ток ветви iя протекает по секции в направлении от её начала Н к концу К (для простоты принимаем, чтощётки скользят не по коллектору,а по виткам обмотки якоря).Через некоторое время якорь повернётся и секция 1 окажется в верхней параллельнойветви (рис. 5.19.б). При этом ток iя будет проходить по секции в обратном направлении, т.е. от её конца К к началу Н.

 

 

Рисунок 5.19. Переход секции обмотки якоря из одной параллельной ветви в другую

(а и б) и кривая изменения тока в секции

 

Большую часть времени, соответствующего одному обороту якоря, ток секции равен току параллельной ветви iя. Но, перемещаясьпод полюсами, секция попадает то в одну, то в другую параллельную ветвь, и направление тока в ней периодически меняется.

Период времени, в течение которого происходит изменение направления тока в секции, называется периодом коммутации. В это время соединённые с секцией

 

Рисунок 5.20. Схемы коммутации проводников

 

коллекторные пластины соприкасаются со щёткой. Секция начинает коммутироваться в момент, когда коллекторные пластины, между которыми подключена секция, перекрываются набегающим краем щётки. Заканчивается этот процесс коммутацией этой секции в момент выхода указанных коллекторных пластин из-под противоположного (сбегающего) края щётки.

Рассмотрим более подробно процесс коммутации в какой-либо секции обмотки якоря двухполюсной машины при различных положениях щётки относительно коллекторных пластин. Для простоты будем считать, что ширина щётки равна ширине коллекторной пластины.

В начальный момент коммутации (рис. 5.20, а) щётка перекрывает коллекторную пластину 1, и ток в обмотке якоря Iя=2iя, пройдя щётку и коллекторную пластину, разветвляется на две ветви, при этом по каждой параллельной ветви (правой и левой) протекают токи iя.

При вращении якоря коллекторные пластины сдвигаются относительно щётки, и через некоторое время щётки начинают перекрывать обе коллекторные пластины 1 и 2, замыкая накоротко коммутируемую секцию 1-4, обозначенную красной линией (рис. 5.20.б). При этом через коммутируемую секцию будет протекать некоторый ток i, в обеих же параллельных ветвях будут проходить токи iя. Поэтому через набегающую коллекторную пластину 1 будет проходить ток i1=iя+i, а через сбегающую пластину 2 - i2=iя-i.

В конце процесса коммутации (рис. 5.20, в) щётка сходит с коллекторной пластины 1 и перекрывает только одну пластину 2, при этом ток в коммутируемой секции направлен противоположно его направлению в начале коммутации.

Таким образом, в течение периода коммутации Тк секция 1-4 переходит из правой параллельной ветви в левую. Ток i в коммутируемой секции линейно изменяется от +iя до -iя, ток i1 - от 2iя до нуля, а ток i2 - от нуля до 2iя. Такая коммутация называется прямолинейной, идеальной.

В действительных условиях работы машин постоянного тока процесс коммутации протекает более сложно. Период коммутации Тк составляет примерно 0,001- 0,0001 сек. Скорость изменения тока очень велика и значение э.д.с. самоиндукции довольно большое. В процессе коммутации участвует одновременно несколько секций, замыкаемых накоротко щётками.

Сумма возникающих в каждой коммутируемой секции э.д.с. самоиндукции и взаимоиндукции называется реактивной э.д.с. Реактивная э.д.с. нарушает условия без искровой работы щеток, так как в секции возникает дополнительный ток. Величина дополнительного тока зависит от величины возникающей реактивной э.д.с. и сопротивления короткозамкнутого контура, которое, главным образом, зависит от сопротивления щеточного контакта. Увеличение нагрузки ведет к возрастанию реактивной э.д.с.

 

Способы улучшения коммутации:

 

1. уменьшение реактивной э.д.с.:

· за счёт уменьшения индуктивности секции; для этого уменьшают число витков (делают одновитковыми);

· пазы якоря делают открытыми и не очень глубокими (не более 4,5-5,5 мм),

· одну сторону каждой секции располагают в верхнем слое паза, а другую – в нижнем;

· уменьшают ширину щётки (в тяговых двигателях и генераторах щётка перекрывает 3,5-4,5 коллекторных пластины);

· в крупных машинах уменьшают длину, окружную скорость и суммарный ток проводников в пазах якоря, увеличивают диаметр якоря (поэтому машины постоянного тока имеют примерно на 20-25% меньшую мощность, чем машины переменного тока при тех же габаритных размерах и частоте вращения).

 

2. компенсацией реактивной э.д.с. и э.д.с. вращения от потока якоря:

· при изменении нагрузки машины от холостого хода до несколько большей её номинальной применяют добавочные полюсы между главными полюсами (для создания дополнительного внешнего коммутирующего магнитного поля). Магнитный поток направлен против потока якоря в коммутационной зоне и компенсирует его; коммутирующая э.д.с. должна быть примерно равна реактивной э.д.с. (не более 0,8-1,0 В);

· для увеличения предельной нагрузки поперечное сечение сердечников добавочных полюсов увеличивают и устанавливают значительно большие воздушные зазоры под главными полюсами;

· обмотку добавочного полюса размещают ближе к якорю;

· в воздушный зазор между остовом и торцами сердечников добавочных полюсов устанавливают немагнитные прокладки для обеспечения безискровой работы щеток и замедления магнитного насыщения сердечников;

· путём смещения щеток с геометрической нейтрали на физическую.

 

3. уменьшение тока коммутации iк путем увеличения сопротивления цепи коммутирующей секции:

· переход от медных щёток к электрографитированным (с достаточно высоким активным сопротивлением: слишком высокое сопротивление приведет к увеличению потерь и нагреву щеток, что может ухудшить коммутацию);

· применение разрезных щёток.

Контрольные вопросы

1. Дайте определение процесса коммутации.

2. Дайте определение периода коммутации.

3. Назначение реактивной э.д.с.

4. Назовите способы уменьшения реактивной э.д.с.

5. Назовите способы компенсации реактивной э.д.с.

6. Назовите способы улучшения коммутации.

 


Date: 2016-11-17; view: 713; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию