Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основные формулы и законы





  • Средняя и мгновенная скорости материальной точки

где - перемещение точки за время , - радиус-вектор, определяющий положение точки.

  • Для прямолинейного равномерного движения ()

,

где – путь, пройденный точкой за время .

  • Среднее и мгновенное ускорения материальной точки

· Полное ускорение при криволинейном движении

где - тангенциальная составляющая ускорения, направленная по касательной к траектории; - нормальная составляющая ускорения, направленная к центру кривизны траектории ( - радиус кривизны траектории в данной точке).

· Путь и скорость для равнопеременного движения материальной точки ()

где - начальная скорость, «+» соответствует равноускоренному движению, «-» - равнозамедленному.

  • Угловая скорость

  • Угловое ускорение

· Угловая скорость для равномерного вращательного движения твердого тела

где - угол поворота тела, – период вращения; - частота вращения ( – число оборотов, совершаемых телом за время ).

· Угол поворота и угловая скорость для равнопеременного вращательного движения твердого тела ()

где - начальная угловая скорость, «+» соответствует равноускоренному вращению, «-» - равнозамедленному.

  • Связь между линейными и угловыми величинами:

; ; ;

где – расстояние от точки до мгновенной оси вращения.

 

 

ЗАДАНИЯ

1.1. Пароход идет по реке от пункта А до пункта В со скоростью 10 км/ч, а обратно - со скоростью 16 км/ч. Найти: 1) среднюю скорость парохода, 2) скорость течения реки. [12,3 км/ч, 0,83 м/с]

1.2. Скорость течения реки 3 км/ч, а скорость движения лодки относительно воды 6 км/ч. Опреде­лите, под каким углом относительно берега должна дви­гаться лодка, чтобы проплыть поперек реки. [60°]

1.3. Велосипедист проехал первую половину времени своего движения со скоростью 16 км/ч, вторую половину времени — со скоростью 12 км/ч. Определите среднюю скорость движения велосипедиста. [14 км/ч]

1.4. Велосипедист проехал первую половину пути со скоростью 16 км/ч, вторую половину пути — со ско­ростью 12 км/ч. Определите среднюю скорость дви­жения велосипедиста. [13,7 км/ч]

1.5. Студент проехал половину пути на велосипеде со скоростью 16 км/ч. Далее в течение половины остав­шегося времени он ехал со скоростью 12 км/ч, а затем до конца пути шел пешком со скоростью 5 км/ч. Определите среднюю скорость движения студента на всем пути.[11,1 км/ч]

1.6. После удара клюшкой шайба скользит по льду с постоянным ускорением. В конце пятой секунды после начала движения ее скорость была равна 1,5 м/с, а в конце шестой секунды шайба остановилась. С каким ускорением двигалась шайба, какой путь прошла и какова была ее скорость на расстоянии 20 м от начала движения? [1,5 м/c2, 27 м, 4,6 м/с]

1.7. Тело, брошенное вертикально вверх, через 3с после начала движения имело скорость 7 м/с. На какую максимальную высоту относительно места броска поднялось тело? Считать . Сопротивлением воздуха пренебречь. [67,6 м]

1.8. Тело падает вертикально с высоты 19,6 м с нулевой начальной скоростью. Какой путь пройдет тело: 1) за первую 0,1 с своего движения, 2) за последнюю 0,1 с своего движения? Считать . Сопротивлением воздуха пренебречь. [0,049 м, 1,9 м]

1.9. Тело падает вертикально с высоты 19,6 м с нулевой начальной скоростью. За какое время тело пройдет: 1) первый 1 м своего пути, 2) последний 1 м своего пути? Считать . Сопротивлением воздуха пренебречь. [0,4с, 0,05с]

1.10. С башни в горизонтальном направлении брошено тело с начальной скоростью 10 м/с. Пре­небрегая сопротивлением воздуха, определите для мо­мента времени = 2 с после начала движения: 1) ско­рость тела; 2) радиус кривизны траектории. Считать . [22 м/с, 109 м]

1.11. Камень брошен горизонтально со скоростью 5м/с. Определите нормальное и тангенциальное ускорения камня через 1 с после начала движения. Считать . Сопротивлением воздуха пренебречь. [4,45 м/с2, 8,73 м/с2]

1.12. Камень брошен горизонтально со скоростью 10 м/с. Найти радиус кривизны траектории камня через 3 с после начала движения. Считать . Сопротивление воздуха не учитывать. [305 м]

1.13. Материальная точка начинает двигаться по ок­ружности радиусом = 2,5 см с постоянным тангенциальным ускорением = 0,5 см/с2. Определите: 1) момент времени, при котором вектор ускорения образует с вектором скорости угол 45°; 2) путь, пройденный за это время движущейся точкой. [1) с; 2) 1,25 см]

1.14. Линейная скорость точки, находящейся на ободе вращающегося диска, в три раза больше, чем линейная скорость точки, находящейся на 6 см ближе к его оси. Определите радиус диска. [9 см]


1.15. Колесо вращается с постоянным угловым ускорением 3 рад/с2. Определите радиус колеса, если через 1 с после начала движения полное ускорение колеса 7,5 м/с2. [79 см]

1.16. Два автомобиля, выехав одновременно из одного пункта, движутся прямолинейно в одном направлении. Зависимость пройденного ими пути задается уравнения­ми и . Определите закон изменения относительной скорости автомобилей. [ ]

1.17. Кинематические уравнения движения двух материальных точек имеют вид и , где , , . Определите: 1) момент времени, для которого скорости этих точек будут равны; 2) ускорения и для этого момента. [1) 0; 2) - 4 м/с2; 2 м/с2]

1.18. Диск вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, от времени задается уравнением ( = 0,3 м/с2, = 0,1 м/с3). Определите радиус, если к концу 2 секунды движения вектор полного ускорения образует с вектором скорости угол = 86°. [0,1 м]

1.19. Нормальное ускорение точки, движущейся по окружности радиусом , задается уравнением , где = 4 м/с4. Определите: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время = 5 с после начала движения; 3) полное ускорение для момента времени = 1 с. [1)4 м/с2; 2)50 м; 3) м/с2]

1.20. Зависимость пройденного телом пути от времени выражается уравнением ( = 2 м/с, = 3 м/с2, = 4 м/с3). Запишите выражения для скорости и ускорения. Определите для момента времени после начала движения пройденный путь, скорость и ускорение. [ 24 м; 38 м/с; 42 м/с2]

1.21. Зависимость пройденного телом пути от времени задаётся уравнением , где =5м, =4м/с, =1м/с2. Запишите выражения для скорости и ускорения. Определите для момента времени после начала движения пройденный путь, скорость и ускорение. [2м; 2м/с; 2 м/с2]

1.22. Зависимость пройденного телом пути от времени задаётся уравнением , где =0,1м, =0,1м/с, =0,14м/с2, =0,01м/с3. 1) Через сколько времени после начала движения ускорение тела будет равно 1м/с2? 2) Чему равно среднее ускорение тела за этот промежуток времени? [1) через 12с; 2) 0,64 м/с2]

1.23. Зависимость пройденного телом пути от времени задаётся уравнением , где =6м, =3м/с, =2м/с2. Найти среднюю скорость и среднее ускорение в интервале времени от 1с до 4с. [ =7м/с; =4м/с2]

1.24. Зависимость пройденного телом пути по окружности радиусом задается уравнением ( = 0,4 м/с2, = 0,1 м/с). Для момента времени после начала движения определите нормальное, тангенциальное и полное ускорения.[0,27 м/с2; 0,8 м/с2; 0,84 м/с2]

1.25. Радиус-вектор материальной точки изменяется со временем по закону , где - орты осей и . Определите для момента времени = 1 с модуль скорости и модуль ускорения. [6,7 м/с; 8,48 м/с2]

1.26. Радиус-вектор материальной точки изменяется со временем по закону . Запишите зависимости скорости и ускорения от времени. Определите модуль скорости в момент времени = 2 с. [16,3 м/с]

1.27. Диск радиусом 10 см вращается вокруг не­подвижной оси так, что зависимость угла поворота ради­уса диска от времени задается уравнением ( = 1 рад/с, = 1 рад/с2, = 1 рад/с3). Определите для точек на ободе диска к концу второй се­кунды после начала движения тангенциальное, нормальное и полное ускоре­ния. [1,4 м/с2; 28,9 м/с2; 28,9 м/с2]


1.28. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением ( =0,5 рад/с2). Определите к концу второй секунды после начала движения: 1) угловую скорость диска; 2) угловое ускорение диска; 3) для точки, находящейся на расстоянии 80 см от оси вращения, тангенциальное, нормальное и полное ускорения. [1) 2 рад/с; 2) 1 рад/с2; 3) 0,8 м/с2, 3,2 м/с2, 3,3 м/с2]

1.29. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением ( =0,1рад/с2). Определите полное ускорение точки на ободе диска к концу второй секунды после начала движения, если в этот момент линейная скорость этой точки 0,4 м/с. [0,25 м/с2]

1.30. Диск радиусом 0,2 м вращается вокруг неподвижной оси так, что зависимость угловой скорос­ти от времени задается уравнением , где . Определите для точек на ободе диска к концу первой секунды после начала движения полное ускорение и число оборотов, сделанных диском за первую минуту движения. [5,8 м/c2; 15, 9]

1.31. Диск радиусом 10 см вращается так, что зависимость угла поворота радиуса диска от времени задается уравнением ( = 2 рад, = 4 рад/с3). Определите для точек на ободе колеса: 1) нормальное ус­корение в момент времени 2 с; 2) тангенциальное ускорение для этого же момента; 3) угол поворота, при котором полное ускорение составляет с радиусом колеса 45°. [1) 230 м/с2; 2) 4,8 м/с2; 3) 2,67 рад]

1.32. Якорь электродвигателя, имеющий частоту вращения 50 с-1, после выключения тока, сделав 628 оборотов, остановился. Определите угловое ускорение якоря. [12,5 рад/с2]

1.33. Колесо автомобиля вращается равнозамедленно. За время 2 мин оно изменило частоту вращения от 240 до 60 мин-1. Определите: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время. [1) 0,157 рад/с2; 2) 300]

1.34. Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найдите угловое ускорение колеса. [3,2 рад/с2]

1.35. Колесо спустя 1 мин после начала вращения приобретает скорость, соответствующую частоте 720 об/мин. Найдите угловое ускорение колеса и число оборотов, сделанных колесом за эту минуту. Движение считать равноускоренным. [1,26 рад/с2; 360 об]

1.36. Колесо, вращаясь равнозамедленно, при торможении уменьшило частоту вращения за 1 мин с 300 об/мин до 180 об/мин. Найдите угловое ускорение колеса и число оборотов, сделанных за это время. [ 0,21 рад/с2; 240 об]

 







Date: 2016-11-17; view: 553; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.017 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию