Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Научное мировоззрение





мировоззрение, ориентирующееся в своих построениях на конкретные науки как на одно из своих оснований, особенно на их содержание — как материал для обобщения и интерпретации в рамках философской онтологии (всеобщей теории бытия). Наука в ее современном понимании, как опытное (экспериментальное) теоретическое (математическое) изучение различных объектов и явлений действительности, мировоззрением, в строгом смысле этого слова, не является, так как, Во—первых, она изучает саму объективную действительность, а не отношение человека к ней (а именно эта проблема является главным вопросом всякого мировоззрения), а Во—вторых, любое мировоззрение является ценностным видом сознания, тогда как наука реализацией когнитивной сферы сознания, целью которой является получение знания о свойствах и отношениях различных объектов самих по себе. Особенно большое значение для научного мировоззрения имеет его опора на знание, получаемое в исторических, социальных и поведенческих науках, так как именно в них аккумулируется знание о реальных формах и механизмах отношения человека к действительности во всех ее сферах.

Философское мировоззрение определяется как систем но-теоретическое. Характерными чертами философского мировоззрения являются логичность и последовательность, системность, высокая степень обобщения. Основным отличием философского мировоззрения от мифологии является высокая роль разума: если миф опирается на эмоции и чувства, то философия — прежде всего на логику и доказательность. От религии философия отличается допустимостью свободомыслия: можно остаться философом, критикуя любые авторитетные идеи.

70.ПОНЯТИЕ О ФИЛОГЕНЕЗЕ ОРГАНОВ.

Филогенез (от греч.phylon– племя, род, вид +genesis– зарождение, происхождение) процесс исторического развития признаков организмов или систематических групп (таксонов) от их возникновения до современности, т.е. история процесса эволюции.

Термин филогенез введен в 1866 г немецким ученым Геккелем (E.Haecbel) как парный термину «онтогенез», обозначающий индивидуальное развитие особи. В таковом значении термин филогенез («филогения») по объему и значению почти не отличался от термина «эволюция».

В процессе эволюции под действием естественного отбора органы претерпевают изменения. Органы и системы могут развиваться прогрессивно, регрессивно или подвергаться перестройке, не меняя уровня организации. В основе самой возможности функциональных преобразований органов лежат два принципа: мультифункциональность - свойство каждого органа исполнять несколько функций; и множественное обеспечение функций - выполнение одной функции несколькими органами-исполнителями (например, кожа амфибий – орган дыхания, выделения, чувствительности, защиты; функция дыхания выполнятся лёгкими, кожей и ротовой полостью). Эти два принципа обеспечивают гибкость и лучшую приспособляемость в борьбе за существование. Конкретные способы (принципы) и преобразований разнообразны. Наиболее важными являются следующие:

1. Дифференциация – разделение органа на специализированные отделы (5 отделов позвоночника, отделы кишечника, головного мозга, нефрона и др.). Дифференциация всегда сопровождается интеграцией – усилением взаимосвязи, взаимозависимости и взаимодействия частей.

2. Расширение функций – увеличение числа функций органа (зубы – не только захват, но измельчение пищи).

3. Смена функций – второстепенная функция органа становится главной (плавательный пузырь становится легкими, жаберная дуга – челюстью и др.). Возникающие при этом органы называются гомологичными – общими по происхождению и плану строения, независимо от выполняемой функции.

4. Активация и интенсификация функции – усиление главной функции органа (прогрессивное развитие лёгких, сердца, мозга, подвижности челюстей, языка и др.).

5. Полимеризация – процесс увеличения в филогенезе числа равноценных гомологичных образований в организме.

6. Олигомеризация – (от греч.oligos– немногочисленный, незначительный, часть сложных слов, указывающая на малое количество чего-либо и греч.meros– часть), уменьшение в филогенезе числа гомологичных образований в организме, связанное с интенсификацией функций соответствующих систем.

71.ПОНЯТИЕ О ГОМЕОСТАЗЕ.

Гомеостаз - это способность биологических систем противостоять изменениям и сохранять динамическое постоянство состава и свойств организма. Здоровье человека - это выражение биологического гомеостаза, оптимальное протекание физиологических процессов на фоне высокого иммунитета. Гомеостаз как система нейроэндокринной регуляции реализуется через эндокринную систему и различные органы (кровообращения, дыхания, пищеварения, выделения) под руководством головного мозга и центральной нервной системы.

Сигнал от головного мозга передаётся в гипоталамус - отдел промежуточного мозга, который занимается контролем и сменой норм гомеостаза. Приказы гипоталамуса в виде нейрогормонов направляются к гормональному усилителю - гипофизу. Гипофиз выбрасывает в кровь гормоны в достаточном количестве для восприятия органами и железами внутренней секреции [2].

Так, например, за постоянством состава белков, липидов и углеводов следят печень, органы пищеварения и выделения. Почки отвечают за осморегуляцию (постоянство концентрации осмотически активных веществ в жидкостях внутренней среды), ионную регуляцию, рН, постоянство объёмов жидкостей. Печень играет важную роль в детоксикации организма. Лёгкие - главный орган газообмена, участвует в очистке организма от газообразных отходов жизнедеятельности.

В системе гомеостаза организма иммунная система работает так, чтобы выделить и защитить себя и уничтожить всё, что не своё. Иммунитет обеспечивается клеточными и гуморальными факторами крови, лимфы и межтканевой жидкости. В случае сбоя может напасть на ткани собственного тела. У иммунной системы две функции: опознать «своих» и убить «чужих» [3].

Иммунитет - освобождение, невосприимчивость, резистентность, сопротивляемость - способность организма защищать собственную целостность и биологическую индивидуальность. Примечательна этимология термина. Immunis – это статус города в империи Древнего Рима, предусматривающий освобождение от уплаты налогов. Иммунная система - наше физиологическое "я". Система иммунитета представляет собой популяции клеток, взаимодействия между которыми обеспечивает поддержание генетического постоянства внутренней среды организма.

 

72.ГИГИЕНА ПОЛОСТИ РТА.

Гигиена (греч. hygienos – целебный, приносящий здоровье) – это отрасль медицинской науки, изучающая влияние факторов среды обитания на человека и разрабатывающая оптимальные требования к условиям осуществления жизнедеятельности человека. Для стоматологов гигиена полости рта – это наука и практика, обеспечивающая снижение количества зубных отложений до уровня, безопасного для тканей зубов и маргинального периодонта. Различают индивидуальную гигиену полости рта и профессиональную. Под индивидуальной гигиеной полости рта понимают мероприятия, которые проводит человек самостоятельно, как правило, в домашних условиях. Профессиональная гигиена полости рта – это система научно обоснованных лечебно-профилактических мероприятий, выполняемая медицинским персоналом, направленная на оздоровление органов и тканей полости рта, а также на профилактику возникновения и прогрессирования стоматологических заболеваний

Гигиена полости рта является неотъемлемым компонентом культуры современного общества, поскольку регулярной правильной гигиеной полости рта здоровье зубов обеспечивается на 85-90%.

 

Зубы являются очень уязвимыми к ежедневному воздействию пищи, которая употребляется нами. При игнорировании проведения гигиены полости рта, можно лишиться зубов, даже если они идеальны от природы, в молодом возрасте.

 

73.ГЕНЕТИЧЕСКАЯ РЕКОМБИНАТОРИКА.

Генетическая рекомбинация включает несколько связанных между собой процессов, в результате которых в клетках или организмах, где они происходят, создаются новые комбинации элементов носителей генетической информации. Рекомбинация между близко расположенными гомологичными хромосомами приводит к интенсивной перетасовке отцовских и материнских генов в ходе мейоза и тем самым создает предпосылки для эволюционной проверки новых комбинаций этих генов в потомстве. Как правило, рекомбинационные события, происходящие в соматических клетках либо во время репликации ДНК, либо после нее и проявляющиеся в виде обмена сестринских хроматид, не приводят к изменению генотипа или фенотипа клетки. Однако нередко они порождают различные геномные перестройки. Это, например, утрата, приобретение или амплификация генетических элементов и установление новых взаимосвязей между уже имеющимися, но по-новому расположенными элементами.

Если использовать молекулярные термины, то можно сказать, что генетическая рекомбинация состоит в образовании ковалентных связей между нуклеотидными последовательностями из разных областей одной и той же или разных молекул ДНК.

Все клетки и многие вирусы содержат информацию о синтезе ферментов, предназначенных не только для репарации повреждений в собственной ДНК, но и ферментов, осуществляющих рекомбинацию. На самом деле некоторые ферменты, участвующие в репликации и репарации ДНК, играют ключевую роль и при рекомбинации.

 

74.БИОЛОГИЧЕСКАЯ СУЩНОСТЬ МИТОЗА.

Митоз (от гр. mitos — нить), или непрямое деление, — основной способ деления эукариотических клеток. Митоз — это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и в родительском ядре. Вслед за делением ядра обычно следует деление самой клетки, поэтому часто термином «митоз» обозначают деление. Митоз представляет собой непрерывный процесс, но для удобства изучения биологи делят его на четыре стадии в зависимости от того, как выглядят в это время хромосомы в световом микроскопе. В митозе выделяют профазу, метафазу, анафазу и телафазу. Биологическое значение митоза состоит, таким образом, в строго одинаковом распределении между дочерними клетками материальных носителей наследственности — молекул ДНК, входящих в состав хромосом. Благодаря равномерному распределению реплицированных хромосом происходит восстановление органов и тканей после повреждения. Митотическое деление клеток является также цитологической основой бесполого размножения организмов клетки целиком.

Биологическое значение. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений.

 

75.БИОЛОГИЧЕСКАЯ СУЩНОСТЬ МЕЙОЗА.

Мейоз – это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое. Впервые он был описан В. Флеммингом в 1882 г. у животных и Э. Сграсбургером в 1888 г. у растений. С помощью мейоза образуются споры и половые клетки — гаметы. В результате редукции хромосомного набора в каждую гаплоидную спору и гамету попадает по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т.е. кариотип организмов данного вида в ряду поколений остается постоянным. Таким образом, важнейшее значение мейоза заключается в обеспечении постоянства кариотипа в ряду поколений организмов данного вида при половом размножении.

Первое мейотическое (редукционное) деление приводит к образованию из диплоидных клеток (2n) гаплоидных клеток (n). Оно начинается с профазы I, в которой осуществляется, так же как и в митозе, упаковка наследственного материала (спирализация хромосом). Одновременно происходит сближение гомологичных (парных) хромосом своими одинаковыми участками — конъюгация (событие, которое в митозе не наблюдается). В результате конъюгации образуются хромосомные пары — биваленты. Каждая хромосома, вступая в мейоз, как отмечалось выше, имеет удвоенное содержание наследственного материала и состоит из двух хроматид, поэтому бивалент состоит из 4 нитей. Когда хромосомы находятся в конъюгированном состоянии, продолжается их дальнейшая спирализация. При этом отдельные хроматиды гомологичных хромосом переплетаются, перекрещиваются между собой. В последующем гомологичные хромосомы несколько отталкиваются одна от другой. В результате этого в местах переплетения хроматид может происходить их разрыв, и как следствие в процессе воссоединения разрывов хроматид гомологичные хромосомы обмениваются соответствующими участками. В результате хромосома, пришедшая к данному организму от отца, включает участок материнской хромосомы, и наоборот. Перекрест гомологичных хромосом, сопровождающийся обменом соответствующими участками между их хроматидами, называется кроссинговером. После кроссинговера в дальнейшем расходятся уже измененные хромосомы, т. е с другим сочетанием генов. Являясь процессом закономерным, кроссинговер приводит каждый раз к обмену разными по величине участками и обеспечивает таким образом эффективную рекомбинацию материала хромосом в гаметах.

В метафазе I завершается формирование веретена деления. Его нити прикрепляются к кинетохорам хромосом, объединенных в биваленты. В результате нити, связанные с кинетохорами гомологичных хромосом, устанавливают биваленты в плоскости экватора веретена деления.

В анафазе I гомологичные хромосомы отделяются друг от друга и расходятся к полюсам клетки. При этом к каждому полюсу отходит гаплоидный набор хромосом (каждая хромосома состоит из двух хроматид).

В телофазе I у полюсов веретена собирается одиночный, гаплоидный набор хромосом, в котором каждый вид хромосом представлен уже не парой, а одной хромосомой, состоящей из двух хроматид. В короткой по продолжительности телофазе I восстанавливается ядерная оболочка, после чего материнская клетка делится на две дочерние.

Иными словами, благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях любого вида растений, животных и грибов. Другое важное значение мейоза заключается в обеспечении чрезвычайного разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их независимом расхождении в анафазе I мейоза, что обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.

76.ПОНЯТИЕ О ГАМЕТОГЕНЕЗЕ.

Гаметогенез — это процесс образования половых клеток. Протекает он в половых железах — гонадах (в яичниках у самок и в семенниках у самцов). Гаметогенез в организме женской особи сводится к образованию женских половых клеток (яйцеклеток) и носит название овогенеза. У особей мужского пола возникают мужские половые клетки (сперматозоиды), процесс образования которых называется сперматогенезом.

Гаметогенез — это последовательный процесс, которых складывается из нескольких стадий — размножения, роста, созревания клеток. В процесс сперматогенеза включается также стадия формирования, которой нет при овогенезе.

Стадии гаметогенеза

1. Стадия размножения. Клетки, из которых в последующем образуются мужские и женские гаметы, называются сперматогониями и овогониями соответственно. Они несут диплоидный набор хромосом 2n2c. На этой стадии первичные половые клетки многократно делятся митозом, в результате чего их количество существенно возрастает.

2. Стадия роста. Kлетки увеличиваются в размерах и превращаются в сперматоциты и овоциты I порядка (последние достигают особенно больших размеров в связи с накоплением питательных веществ в виде желтка и белковых гранул). Эта стадия соответствует интерфазе I мейоза. Важное событие этого периода — репликация молекул ДНК при неизменном количестве хромосом. Они приобретают двунитчатую структуру: генетическая формула клеток в этот период выглядит как 2n4c.

3. Стадия созревания. Происходят два последовательных деления — редукционное (мейоз I) и эквационное (мейоз II), которые вместе составляют мейоз. После первого деления (мейоза I) образуются сперматоциты и овоциты II порядка (с генетической формулой n2c), после второго деления (мейоза II) — сперматиды и зрелые яйцеклетки (с формулой nc) с тремя редукционными тельцами, которые погибают и в процессе размножения не участвуют. Так сохраняется максимальное количество желтка в яйцеклетках.

Центральное событие в процессе гаметогенеза — редукция диплоидного набора хромосом (в ходе мейоза) и формирование гаплоидных гамет.

4. Стадия формирования, или спермиогенеза (только при сперматогенезе). В результате этого процесса каждая незрелая сперматида превращается в зрелый сперматозоид (с формулой nc), приобретая все структуры, ему свойственные. Ядро сперматиды уплотняется, происходит сверхспирализация хромосом, которые становятся функционально инертными. Комплекс Гольджи перемещается к одному из полюсов ядра, формируя акросому. К другому полюсу ядра устремляются центриоли, причем одна из них принимает участие в формировании жгутика. Вокруг жгутика спирально закручивается одна митохондрия. Почти вся цитоплазма сперматиды отторгается, поэтому головка сперматозоида ее почти не содержит.

 

 

Date: 2016-06-06; view: 377; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.011 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию