Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Задачу о надежности ⇐ ПредыдущаяСтр 3 из 3
Пусть конструируется электронный прибор, состоящий из трех основных компонентов. Все компоненты соединены последовательно, поэтому выход из строя одной из них приводит к отказу всего прибора. Надежность (вероятность безотказной работы) прибора можно повысить путем дублирования каждого компонента. Конструкция прибора позволяет использовать запасных блоков для каждого j-того компонента, т.е. каждый компонент может содержать до блоков, соединенных параллельно. Общая стоимость прибора не должна превышать С долларов. Если j-тый компонент имеет штук соединенных параллельно блоков, то его надежность составляет и стоимость . Требуется определить количество блоков в каждом j-том компоненте , при котором надежность прибора максимальна, а стоимость прибора не превышает заданной величины С. Построение ММ. По определению, надежность F прибора, состоящего из N последовательно соединенных компонентов, каждый из которых включает параллельно соединенных блоков, равна произведению надежности компонент. Тогда ММ имеет вид: (7) (8) , (9) Из физического смысла задачи следует, что , >0 для всех допустимых . Введем дополнительную переменную - количество средств, израсходованных на дублирование компонент 1,2,… j-1. Тогда можно записать:
(10) (11) Из (10) следует: . Тогда с учетом (9) область допустимых значений будет иметь вид , а рекуррентные соотношения Беллмана принимают вид: (12). (13) Покажем применение рекуррентных соотношений Беллмана для решения задачи (7)-(9), решаемых в порядке . Проводя преобразования, аналогичные преобразованиям задачи о загрузке рюкзака, получим: Здесь , есть область изменения при фиксированном . Date: 2016-05-25; view: 655; Нарушение авторских прав |