Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Уравнения установившегося режима электрической сети
Установившимся режимом работы электрической сети при постоянных источниках тока и напряжения называется такое её состояние, при котором ток в любой ветви и напряжение в любом узле остаются относительно неизменны-ми в течение сколь угодно длительного времени. Рассмотрим узел электрической сети, в котором соединены несколько ветвей. В качестве ветвей могут быть участки ЛЭП, трансформаторы, батареи статических конденсаторов (БСК), синхронные компенсаторы (СК) и другие элементы электрической сети.
1,2,3,…,j – номера узлов, имеющих электрическую связь с рассматриваемым узлом I; yi1,yi2,…,yij – продольные проводимости элементов сети
yi0 – проводимость i - го узла, включающая проводимости (поперечные) элементов, установленных в i – м узле (БСК, СК, реакторы, и другие элементы), половины поперечных проводимостей линий, подключен- ных в i – м узле, поперечные проводимости трансформаторов (если они примыкают к этому узлу узлом начала схемы замещения). Например:
Расчетное направление тока или мощности может не совпадать с реальным. В этом случае они будут отличаться знаками.
В соответствии с I - законом Кирхгофа в узле i должен соблюдаться баланс токов, то есть сумма токов в ветвях, присоединенных к узлу (с учетом направ-лений токов) должна быть равна инъекции тока в узле:
N – количество узлов непосредственно связанных с i – м узлом. Инъекцию тока в узле І i можно определить:
Левая часть уравнения выражения (1):
Объединим выражения (2) и (3), и запишем формулу (1):
Умножим обе части уравнения (4) на
Рассмотрим левую часть уравнения (4). Запишем баланс токов в i – м узле в развернутом виде:
Раскроем скобки:
Сгруппируем элементы в левой части:
yij – взаимная проводимость узлов i и j. Равна продольной проводимости участка i – j: yij = 1 / Zij.
Yii = S yij + yi0; Во вторых скобках – сумма произведений напряжений узлов, соединенных с i – м, на их взаимные проводимости. Запишем уравнение (8) с учетом принятых обозначений:
(9) Оно описывает режим i - го узла и баланс токов в нём.
Неизвестным являются напряжения узлов: Заданные величины: инъекция тока Подставим в правую часть формулы (9) формулу (2):
Умножим обе части уравнения (10) на
Получаем уравнение установившегося режима в форме баланса мощности:
(11)
Описывает баланс мощностей в i – м узле.
Неизвестные величины: напряжения в узлах Известные величины: Уравнение (11) - нелинейное относительно неизвестных напряжений.
Примечания: 1. Уравнения (9) и (11) – уравнения с комплексными неизвестными и комплексными неизвестными. Содержат параметры, характеризую- щие схему сети (проводимости yii и yij) и её режим (напряжения Ui и Uj, мощности Si, Pi, Qi); 2. Неизвестными величинами в них являются напряжения узлов Ui и Uj; 3. Известные величины в них – собственная и взаимные проводимости узлов. Заданные величины – ток и мощность в узле; 4. Уравнения записаны для одного узла электрической сети. Для схемы, состоящей из N узлов, потребуется записать систему из N таких уравнений.
Лекция 8 В практических расчетах комплексные уравнения (9) и (11) часто исполь-зуются в преобразованном виде. Комплексные величины в их составе пред-ставляются в виде действительных и мнимых составляющих. В результате, комплексное уравнение распадается на два действительных уравнения. Преобразуем уравнение (11), представив неизвестные напряжения (комп-лексные величины) Ui,Uj в прямоугольных координатах:
Проводимости тоже представим в виде составляющих:
Мощность:
Подставим эти значения в (11):
Выполняем преобразование: раскрываем скобки, группируем, разделяем действительную и мнимую части уравнения. Получаем два действительных уравнения установившегося режима в форме баланса мощностей, записанных в прямоугольных координатах:
Неизвестные величины в них - составляющие напряжений Ui’, Ui”, Uj’, Uj”. Уравнение (13) описывает баланс активной и реактивной мощности в одном i – м узле сети. Для сети, состоящей из n узлов нужно записать 2n таких урав-нений. Неизвестными являются составляющие напряжения
Представим уравнение (11) в полярных координатах. Для этого комплексы неизвестных напряжений запишем в соответствии с формулой Эйлера:
Здесь Ui – модуль,
Подставим (14) в (11) учетом того, что
Преобразуем уравнение (15): раскрываем скобки, группируем, разделя-ем действительные и мнимые части, меняем местами
Это уравнение установившегося режима в форме баланса мощности, записанное в полярных координатах. Неизвестные величины в нём - модули напряжений Это два действительных уравнения, записанные для одного i -го узла схемы. Определяют баланс активной и реактивной мощности в нем. Существуют и другие формы записи уравнений установившегося режима. Пример:
Составить уравнения в форме баланса токов для каждого из узлов сети
Составим уравнение для первого узла. Для него i=1; j=0,2,3; n=3;
Для узла 0: i=0; j=1; n=1;
Для узла 2: i=2; j=1,3; n=2;
Для узла 3: i=3; j=1,2; n=2;
Уравнения в форме баланса мощностей можно получить, если умножить каждое из полученных уравнений на сопряженный комплекс соответствующе-го напряжения.
Запишем уравнение для 1 – го узла в прямоугольных координатах:
Уравнения для 1-го узла в полярных координатах: i=1; j=0,2,3; n=3; Используем формулу (16): Date: 2016-05-25; view: 492; Нарушение авторских прав |