Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Оптоэлектронные приборы
Оптоэлектронными называют приборы, которые чувствительны к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также приборы, производящие или использующие такое излучение. Излучение в видимой, инфракрасной и ультрафиолетовой областях относят к оптическому диапазону спектра. Обычно к указанному диапазону относят электромагнитные волны с длиной от 1 нм до 1 мм, что соответствует частотам примерно от 0,5·1012 Гц до 5·1017 Гц. Иногда говорят о более узком диапазоне частот – от 10 нм до 0,1 мм (~5·1012…5·1016 Гц). Видимому диапазону соответствуют длины волн от 0,38 мкм до 0,78 мкм (частота около 1015 Гц). На практике широко используются источники излучения (излучатели), приемники излучения (фотоприемники) и оптроны (оптопары). Оптроном называют прибор, в котором имеется и источник, и приемник излучения, конструктивно объединенные и помещенные в один корпус. Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников – фоторезисторы, фотодиоды, фототранзисторы и фототиристоры. Широко используются оптроны, в которых применяются пары светодиод-фотодиод, светодиод-фототранзистор, светодиод-фототиристор. Основные достоинства оптоэлектронных приборов: · высокая информационная емкость оптических каналов передачи информации, что является следствием больших значений используемых частот; · полная гальваническая развязка источника и приемника излучения; · отсутствие влияния приемника излучения на источник (однонаправленность потока информации); · невосприимчивость оптических сигналов к электромагнитным полям (высокая помехозащищенность).
Излучающий диод (светодиод) Излучающий диод, работающий в видимом диапазоне волн, часто называют светоизлучающим, или светодиодом. Рассмотрим устройство, характеристики, параметры и систему обозначений излучающих диодов. Устройство. Схематическое изображение структуры излучающего диода представлено на рис. 6.1,а, а его условное графическое обозначение – на рис. 6.2,б. Излучение возникает при протекании прямого тока диода в результате рекомбинации электронов и дырок в области p-n -перехода и в областях, примыкающих к указанной области. При рекомбинации излучаются фотоны. Характеристики и параметры. Для излучающих диодов, работающих в видимом диапазоне (длина волн от 0,38 до 0,78 мкм, частота около 1015 Гц), широко используются следующие характеристики: · зависимость яркости излучения L от тока диода i (яркостная характеристика); зависимость силы света Iv от тока диода i. Рис. 6.1. Структура светоизлучающего диода (а) и его графическое изображение (б) Яркостная характеристика для светоизлучающего диода типа АЛ102А представлена на рис. 6.2. Цвет свечения этого диода – красный.
Рис. 6.2. Яркостная характеристика светодиода
График зависимости силы света от тока для светоизлучающего диода типа АЛ316А представлен на рис. 6.3. Цвет свечения – красный.
Рис. 6.3. Зависимость силы света от тока светодиода Для излучающих диодов, работающих не в видимом диапазоне, используют характеристики, отражающие зависимость мощности излучения Р от тока диода i. Зона возможных положений графика зависимости мощности излучения от тока для излучающего диода типа АЛ119А, работающего в инфракрасном диапазоне (длина волны 0,93…0,96 мкм), представлена на рис. 6.4. Приведем для диода АЛ119А его некоторые параметры: · время нарастания импульса излучения – не более 1000 нс; · время спада импульса излучения – не более 1500 нс; · постоянное прямое напряжение при i =300 мА – не более 3 В; · постоянный максимально допустимый прямой ток при t <+85°C – 200 мА; · температура окружающей среды –60 …+85°С.
Рис. 6.4. Зависимость мощности излучения от тока светодиода Для информации о возможных значениях коэффициента полезного действия отметим, что излучающие диоды типа ЗЛ115А, АЛ115А, работающие в инфракрасном диапазоне (длина волны 0,95 мкм, ширина спектра не более 0,05 мкм), имеют коэффициент полезного действия не менее 10 %. Система обозначений. Используемая система обозначений светоизлучающих диодов предполагает применение двух или трех букв и трех цифр, например АЛ316 или АЛ331. Первая буква указывает на материал, вторая (или вторая и третья) – на конструктивное исполнение: Л – единичный светодиод, ЛС – ряд или матрица светодиодов. Последующие цифры (а иногда буквы) обозначают номер разработки.
Фоторезистор Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра. Схематическое изображение структуры фоторезистора приведено на рис. 6.5, а, а его условное графическое изображение – на рис. 6.5, б. Поток фотонов, падающих на полупроводник, вызывает появление пар электрон-дырка, увеличивающих проводимость (уменьшающих сопротивление). Это явление называют внутренним фотоэффектом (эффектом фотопроводимости). Фоторезисторы часто характеризуются зависимостью тока i от освещенности Е при заданном напряжении на резисторе. Это так называемая люкс-амперная характеристика (рис. 6.6).
Рис. 6.5. Структура (а) и схематическое обозначение (б) фоторезистора
Рис. 6.6. Люкс-амперная характеристика фоторезистора ФСК-Г7 Часто используют следующие параметры фоторезисторов: · номинальное темновое (при отсутствии светового потока) сопротивление (для ФСК-Г7 это сопротивление равно 5 МОм); · интегральную чувствительность (чувствительность, определяемая при освещении фоторезистора светом сложного спектрального состава). Интегральная чувствительность (токовая чувствительность к световому потоку) S определяется выражением: , где iф – так называемый фототок (разность между током при освещении и током при отсутствии освещения); Ф – световой поток. Для фоторезистора ФСК-Г7 S =0,7 А/лм.
Фотодиод Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7, а, а его условное графическое изображение – на рис. 6.7, б.
Рис. 6.7. Структура (а) и обозначение (б) фотодиода Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n -перехода и в прилегающих к нему областях под действием излучения. Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак >0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n -перехода). Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк). Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8. Рис. 6.8. Вольт-амперные характеристики фотодиода Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n– перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n– перехода носители тока движутся к электродам (дырки – к электроду слоя p, электроны – к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию. На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим). В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана. Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).
Рис. 6.9 Рис. 6.10
Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107–1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).
Оптрон (оптопара) Оптрон – полупроводниковый прибор, содержащий источник излучения и приемник излучения, объединенных в одном корпусе и связанные между собой оптически, электрически и одновременно обеими связями. Очень широко распространены оптроны, у которых в качестве приемника излучения используются фоторезистор, фотодиод, фототранзистор и фототиристор. В резисторных оптронах выходное сопротивление при изменении режима входной цепи может изменяться в 107…108 раз. Кроме того, вольт-амперная характеристика фоторезистора отличается высокой линейностью и симметричностью, что обусловливает широкую применимость резистивных оптопар в аналоговых устройствах. Недостатком резисторных оптронов является низкое быстродействие – 0,01…1 с. В цепях передачи цифровых информационных сигналов применяются главным образом диодные и транзисторные оптроны, а для оптической коммутации высоковольтных сильноточных цепей – тиристорные оптроны. Быстродействие тиристорных и транзисторных оптронов характеризуется временем переключения, которое часто лежит в диапазоне 5…50 мкс. Рассмотрим подробнее оптопару светодиод-фотодиод (рис. 6.11, а). Излучающий диод (слева) должен быть включен в прямом направлении, а фотодиод – в прямом (режим фотогенератора) или обратном направлении (режим фотопреобразователя). Направления токов и напряжений диодов оптопары приведены на рис. 6.11, б.
Рис. 6.11. Схема оптопары (а) и направление токов и напряжений в ней (б) Изобразим зависимость тока iвых от тока iвх при uвых =0 для оптопары АОД107А (рис. 6.12). Указанная оптопара предназначена для работы как в фотогенераторном, так и в фотопреобразовательном режиме.
Рис. 6.12. Передаточная характеристика оптопары АОД107А
Date: 2016-05-23; view: 565; Нарушение авторских прав |