Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Биполярные транзисторы





Биполярный транзистор – это полупроводниковый прибор с двумя p-n– переходами, имеющий три вывода. Действие биполярного транзистора основано на использовании носителей заряда обоих знаков (дырок и электронов), а управление протекающим через него током осуществляется с помощью управляющего тока.

Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором.

Устройство транзистора. Биполярный транзистор в своей основе содержит три слоя полупроводника (p-n-p или n-p-n) и соответственно два p-n – перехода. Каждый слой полупроводника через невыпрямляющий контакт металл-полупроводник подсоединен к внешнему выводу.

Средний слой и соответствующий вывод называют базой, один из крайних слоев и соответствующий вывод называют эмиттером, а другой крайний слой и соответствующий вывод – коллектором.

На рис. 3.1, а показано схематическое, упрощенное изображение структуры транзистора типа n-p-n и два допустимых варианта условного графического обозначения (рис. 3.1, б).

Транзистор p-n-p устроен аналогично, упрощенное изображение его структуры дано на рис. 3.2, а. Более простой вариант условного графического обозначения – на рис. 3.2, б.

Транзистор называют биполярным, так как в процессе протекания электрического тока участвуют носители электричества двух знаков – электроны и дырки. Но в различных типах транзисторов роль электронов и дырок различна. Транзисторы типа n-p-n более распространены в сравнении с транзисторами типа p-n-p, так как обычно имеют лучшие параметры. Это можно объяснить тем, что основную роль в электрических процессах в транзисторах типа n-p-n играют электроны, а транзисторах типа p-n-p – дырки. Электроны же обладают подвижностью в два-три раза большей, чем дырки.

 

Рис. 3.1. Структура транзистора типа n-p-n (а)

и его графическое обозначение (б)

Рис. 3.2.Структура транзистора типа p-n-p (а)

и его графическое обозначение (б)

Важно отметить, что реально площадь коллекторного перехода значительно больше площади эмиттерного перехода, так как такая несимметрия значительно улучшает свойства транзистора.

Количественные особенности структуры транзистора. В основе работы биполярного транзистора типа n-p-n лежат те же физические процессы, которые рассмотрены при изучении полупроводникового диода. Особенности транзистора определяются особенностями его конструкции.

Основными элементами транзистора являются два соединенных p-n перехода. Это позволяет дать формальное представление структуры транзистора, показанное на рис. 3.3. Для понимания принципа работы транзистора исключительно важно учитывать, что p-n– переходы транзистора сильно взаимодействуют. Это означает, что ток одного перехода сильно влияет на ток другого, и наоборот. Именно это взаимодействие радикально отличает транзистор от схемы с двумя диодами (рис. 3.4).

 

Рис. 3.3. Структура транзистора Рис. 3.4. Схема с двумя диодами

 

В схеме с диодами ток каждого диода зависит от напряжения на нем самом и никак не зависит от тока другого диода.

Указанное взаимодействие имеет исключительно простую главную причину: очень малое расстояние между переходами транзистора (от 20 – 30 мкм до 1 мкм и менее). Это расстояние называют толщиной базы. Именно эта количественная особенность структуры создает качественное своеобразие транзистора.

Три схемы включения биполярного транзистора с ненулевым сопротивлением нагрузки. Транзисторы часто применяют для усиления переменных сигналов (которые при расчетах обычно считают синусоидальными), при этом в выходной цепи транзистора применяется нагрузка с ненулевым сопротивлением.

Во входной цепи, кроме источника постоянного напряжения, необходимого для обеспечения активного режима работы, также используют источник входного переменного напряжения. Представим три характерные схемы включения транзистора.

Схема с общей базой (ОБ) (рис. 3.5). Если сопротивление нагрузки достаточно велико, то амплитуда переменной составляющей напряжения uвых значительно больше амплитуды напряжения uвх. Учитывая, что , можно утверждать, что схема не обеспечивает усиления тока, но усиливает напряжение. Входной ток такой схемы достаточно большой, а соответствующее входное сопротивление мало.

Рис. 3.5. Схема включения транзистора с общей базой (ОБ)

Рис. 3.6. Схема включения транзистора с общим эмиттером (ОЭ)

Схема с общим эмиттером (ОЭ) (рис. 3.6). Так как , а при достаточно большом сопротивлении Rн амплитуда переменной составляющей напряжения uвых значительно больше амплитуды напряжения uвх, следовательно, схема обеспечивает усиление и тока, и напряжения.


Входной ток схемы достаточно мал, поэтому входное сопротивление больше, чем у схемы с общей базой.

Схема с общим коллектором (ОК) (рис. 3.7). При определении переменных составляющих токов и напряжений источники постоянного напряжения u1 и u2 заменяют закоротками (закорачивают).

Рис. 3.7. Схема включения транзистора с общим коллектором (ОК)

После этого к коллектору оказываются подключенными и источник входного напряжения uвх, и сопротивление нагрузки. Отсюда и название – схема с общим коллектором.

Напряжение uбэ и особенно его переменная составляющая достаточно малы, поэтому амплитуда переменной составляющей напряжения uвх примерно равна амплитуде переменной составляющей напряжения uвых. Поэтому схемы с общим коллектором называют эмиттерным повторителем.

Учитывая, что , можно отметить, что схема усиливает ток, но не усиливает напряжение.

Схема отличается повышенным входным сопротивлением, так как при увеличении входного напряжения увеличению входного тока препятствует увеличение как напряжения uбэ, так и напряжения uвых.

На практике наиболее часто используется схема с общим эмиттером.

 







Date: 2016-05-23; view: 355; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.011 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию