Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Средние и законы больших чисел
Законы больших чисел состоят в том, что эмпирические средние сходятся к теоретическим. В классическом варианте: выборочное среднее арифметическое при определенных условиях сходится по вероятности при росте числа слагаемых к математическому ожиданию. На основе законов больших чисел обычно доказывают состоятельность различных статистических оценок. В целом эта тематика занимает заметное место в теории вероятностей и математической статистике. Однако математический аппарат при этом основан на свойствах сумм случайных величин (векторов, элементов линейных пространств). Следовательно, он не пригоден для изучения вероятностных и статистических проблем, связанных со случайными объектами нечисловой природы. Это такие объекты, как бинарные отношения, нечеткие множества, вообще элементы пространств без векторной структуры. Объекты нечисловой природы все чаще встречаются в прикладных исследованиях. Много конкретных примеров приведено выше в настоящей главе. Поэтому представляется полезным получение законов больших чисел в пространствах нечисловой природы. Необходимо решить следующие задачи. А) Определить понятие эмпирического среднего. Б) Определить понятие теоретического среднего. В) Ввести понятие сходимости эмпирических средних к теоретическому. Г) Доказать при тех или иных комплексах условий сходимость эмпирических средних к теоретическому. Д) Обобщив это доказательство, получить метод обоснования состоятельности различных статистических оценок. Е) Дать применения полученных результатов при решении конкретных задач. Ввиду принципиальной важности рассматриваемых результатов приводим доказательство закона больших чисел, а также результаты компьютерного анализа множества эмпирических средних. Определения средних величин. Пусть X - пространство произвольной природы, x1, x2, x3,..., xn - его элементы. Чтобы ввести эмпирическое среднее для x1, x2, x3,..., xn будем использовать действительнозначную (т.е. с числовыми значениями) функцию f (x,y) двух переменных со значениями в X. В стандартных математических обозначениях: Величина f (x,y) интерпретируется как показатель различия между x и y: чем f (x,y) больше, тем x и y сильнее различаются. В качестве f можно использовать расстояние в Х, квадрат расстояния и т.п. Определение 1. Средней величиной для совокупности x1, x2, x3,..., xn (относительно меры различия f), обозначаемой любым из трех способов: хср = En (f) = En (x1, x2, x3,..., xn; f), называем решение оптимизационной задачи (1) Это определение согласуется с классическим: если Х = R 1, f (x,y) = (x - y) 2, то хср - выборочное среднее арифметическое. Если же Х = R 1, f (x,y) = |x - y|, то при n = 2k+ 1 имеем хср = x (k+ 1), при n= 2k эмпирическое среднее является отрезком [ x (k), x (k+ 1)]. Здесь через x (i) обозначен i -ый член вариационного ряда, построенного по x1, x2, x3,..., xn , т.е. i -я порядковая статистика. Таким образом, при Х = R 1, f (x,y) = |x - y| решение задачи (1) дает естественное определение выборочной медианы. Правда, несколько отличающееся от определения, предлагаемого в курсах "Общей теории статистики", в котором при n = 2k медианой называют полусумму двух центральных членов вариационного ряда (x (k) + x (k+ 1))/2. Иногда x (k) называют левой медианой, а х (k+ 1)- правой медианой [7]. Решением задачи (1) является множество En (f), которое может быть пустым, состоять из одного или многих элементов. Выше приведен пример, когда решением является отрезок. Если Х = R 1\{ х 0}, f (x,y) = (x - y) 2 , а среднее арифметическое выборки равно х 0, то En (f) пусто. При моделировании реальных ситуаций часто можно принять, что Х состоит из конечного числа элементов. Тогда множество En (f) непусто - минимум на конечном множестве всегда достигается. Понятия случайного элемента со значениями в Х, его распределения, независимости случайных элементов используем согласно предыдущему пункту настоящей главы, т.е. каноническому справочнику Ю.В. Прохорова и Ю.А. Розанова [19]. Будем считать, что функция f измерима относительно -алгебры, участвующей в определении случайного элемента . Тогда при фиксированном y является действительнозначной случайной величиной. Предположим, что она имеет математическое ожидание. Определение 2. Теоретическим средним E (x,f) (другими словами, математическим ожиданием) случайного элемента относительно меры различия f называется решение оптимизационной задачи
Это определение, как и для эмпирических средних, согласуется с классическим. Если Х = R 1, f (x,y) = (x - y) 2, то Е (x,f) = М (x (ω)) - обычное математическое ожидание. При этом М - дисперсия случайной величины . Если же Х = R 1, f (x,y) = |x - y|, то E(x,f) = [ a,b ], где a = sup{ t: F(t) < 0,5}, b = inf{ t: F(t) > 0,5}, где F(t) - функция распределения случайной величины . Если график F(t) имеет плоский участок на уровне F(t) = 0,5, то медиана - теоретическое среднее в смысле определения 2 - является отрезком. В классическом случае обычно говорят, что каждый элемент отрезка [ a; b ]является одним из возможных значений медианы. Поскольку наличие указанного плоского участка - исключительный случай, то обычно решением задачи (2) является множество из одного элемента a = b - классическая медиана распределения случайной величины . Теоретическое среднее E (x, f) можно определить лишь тогда, когда существует при всех . Оно может быть пустым множеством, например, если Х = R 1\{ х 0}, f (x,y) = (x - y) 2, x0= М (x (ω)). И то, и другое исключается, если Х конечно. Однако и для конечных Х теоретическое среднее может состоять не из одного, а из многих элементов. Отметим, однако, что в множестве всех распределений вероятностей на Х подмножество тех распределений, для которых E (x,f) состоит более чем из одного элемента, имеет коразмерность 1, поэтому основной является ситуация, когда множество E(x,f) содержит единственный элемент [7]. Существование средних величин. Под существованием средних величин будем понимать непустоту множеств решений соответствующих оптимизационных задач. Если Х состоит из конечного числа элементов, то минимум в задачах (1) и (2) берется по конечному множеству. А потому, как уже отмечалось, эмпирические и теоретические средние существуют. Ввиду важности обсуждаемой темы приведем доказательства. Для строгого математического изложения нам понадобятся термины из раздела математики под названием "общая топология". Топологические термины и результаты будем использовать в соответствии с классической монографией [20]. Так, топологическое пространство называется бикомпактным в том и только в том случае, когда из каждого его открытого покрытия можно выбрать конечное подпокрытие [20, с.183]. Теорема 1. Пусть Х - бикомпактное пространство, функция f непрерывна на Х2 (в топологии произведения). Тогда эмпирическое и теоретическое средние существуют. Доказательство. Функция f (xi, y) от y непрерывна, сумма непрерывных функций непрерывна, непрерывная функция на бикомпакте достигает своего минимума, откуда и следует заключение теоремы относительно эмпирического среднего. Перейдем к теоретическому среднему. По теореме Тихонова [20, с.194] из бикомпактности Х вытекает бикомпактность Х2. Для каждой точки (x, y) из Х2 рассмотрим - окрестность в Х2 в смысле показателя различия f, т.е. множество
Поскольку f непрерывна, то множества U (x,y) открыты в рассматриваемой топологии в Х2. По теореме Уоллеса [20, с.193] существуют открытые (в Х) множества V (x) и W (y), содержащие x и y соответственно и такие, что их декартово произведение V (x)× W (y)целиком содержится внутри U (x, y). Рассмотрим покрытие Х2 открытыми множествами V (x)× W (y).Из бикомпактности Х2 вытекает существование конечного подпокрытия { V (xi)× W (yi), i = 1, 2 ,..., m}. Для каждого х из Х рассмотрим все декартовы произведения V (xi)× W (yi), куда входит точка (x, y) при каком-либо y. Таких декартовых произведений и их первых множителей V (xi) конечное число. Возьмем пересечение таких первых множителей V (xi) и обозначим его Z (x). Это пересечение открыто, как пересечение конечного числа открытых множеств, и содержит точку х. Из покрытия бикомпактного пространства X открытыми множествами Z (x) выберем открытое подпокрытие Z 1, Z 2 ,..., Zk. Покажем, что если и принадлежат одному и тому же Zj при некотором j, то (3) Пусть Zj = Z (x 0)при некотором x 0. Пусть V (xi)× W (yi), , - совокупность всех тех исходных декартовых произведений из системы { V (xi)× W (yi), i = 1, 2 ,..., m }, куда входят точки (x 0, y) при различных y. Покажем, что их объединение содержит также точки и при всех y. Действительно, если (х 0, y) входит в V (xi)× W (yi), то y входит в W (yi), а и вместе с x 0 входят в V (xi), поскольку , и x 0 входят в Z (x 0). Таким образом, и принадлежат V (xi)× W (yi), а потому согласно определению V (xi)× W (yi)
откуда и следует неравенство (3). Поскольку Х2 - бикомпактное пространство, то функция f ограничена на Х2 , а потому существует математическое ожидание Mf ( ,y) для любого случайного элемента , удовлетворяющего приведенным выше условиям согласования топологии, связанной с f, и измеримости, связанной с . Если х1 и х2 принадлежат одному открытому множеству Zj, то
а потому функция g(y) = Mf( ,y) (4) непрерывна на Х. Поскольку непрерывная функция на бикомпактном множестве достигает своего минимума, т.е. существуют такие точки z, на которых g (z) = inf{ g (y), y X }, то теорема 1 доказана. В ряде интересных для приложений ситуаций Х не является бикомпактным пространством. Например, если Х = R 1. В этих случаях приходится наложить на показатель различия f некоторые ограничения, например, так, как это сделано в теореме 2. Теорема 2. Пусть Х - топологическое пространство, непрерывная (в топологии произведения) функция f: X 2 R 2 неотрицательна, симметрична (т.е. f (x,y) = f (y,x)для любых x и y из X), существует число D > 0 такое, что при всех x, y, z из X f (x,y) < D { f (x,z) + f(z,y)}. (5) Пусть в Х существует точка x 0 такая, что при любом положительном R множество { x: f (x, x 0) < R } является бикомпактным. Пусть для случайного элемента , согласованного с топологией в рассмотренном выше смысле, существует g (x 0) = Mf ( , x 0). Тогда существуют (т.е. непусты) математическое ожидание E(x,f) и эмпирические средние En(f). Замечание. Условие (5) - некоторое обобщение неравенства треугольника. Например, если g - метрика в X, а f = gp при некотором натуральном p, то для f выполнено соотношение (5) с D = 2 p. Доказательство. Рассмотрим функцию g (y), определенную формулой (4). Имеем f ( ,y) < D { f( , x 0) + f(x0,,y)}. (6) Поскольку по условию теоремы g (x 0) существует, а потому конечно, то из оценки (6) следует существование и конечность g (y) при всех y из Х. Докажем непрерывность этой функции. Рассмотрим шар (в смысле меры различия f) радиуса R с центром в x 0: K (R) = { x: f (x, x 0) < R }, R > 0. В соответствии с условием теоремы K (R) как подпространство топологического пространства Х является бикомпактным. Рассмотрим произвольную точку х из Х. Справедливо разложение
где (С) - индикатор множества С. Следовательно, (7) Рассмотрим второе слагаемое в (7). В силу (5) (8) Возьмем математическое ожидание от обеих частей (8): (9) В правой части (9) оба слагаемых стремятся к 0 при безграничном возрастании R: первое - в силу того, что
второе - в силу того, что распределение случайного элемента сосредоточено на Х и
Пусть U (x) - такая окрестность х (т.е. открытое множество, содержащее х), для которой sup { f(y, x), y U(x) } < Имеем (10) В силу (9) и (10) при безграничном возрастании R (11) равномерно по y U (x). Пусть R (0) таково, что левая часть (11) меньше > 0 при R>R (0) и, кроме того, y U(x) K (R (0)). Тогда при R>R (0) (12) Нас интересует поведение выражения в правой части формулы (12) при y U (x). Рассмотрим f 1 - сужение функции f на замыкание декартова произведения множеств U (x)× K (R), и случайный элемент Тогда
при y U (x), а непрерывность функции была доказана в теореме 1. Последнее означает, что существует окрестность U 1(x) точки х такая, что (13) при y U 1(x). Из (12) и (13) вытекает, что при
что и доказывает непрерывность функции g(x). Докажем существование математического ожидания E (x,f). Пусть R (0) таково, что (14) Пусть H - некоторая константа, значение которой будет выбрано позже. Рассмотрим точку х из множества K (HR (0)) С - дополнения K (HR (0)), т.е. из внешности шара радиуса HR (0 ) с центром в х 0. Пусть Тогда имеем
откуда (15) Выбирая H достаточно большим, получим с учетом условия (14), что при x K (HR (0)) С справедливо неравенство (16) Можно выбрать H так, чтобы правая часть (16) превосходила Сказанное означает, что Argmin g(x) достаточно искать внутри бикомпактного множества K(HR (0)). Из непрерывности функции g вытекает, что ее минимум достигается на указанном бикомпактном множестве, а потому - и на всем Х. Существование (непустота) теоретического среднего E (x,f) доказана. Докажем существование эмпирического среднего En(f). Есть искушение проводить его дословно так же, как и доказательство существования математического ожидания E (x,f), лишь с заменой 1/2 в формуле (16) на частоту попадания элементов выборки xi в шар K (R (0)). Эта частота, очевидно, стремится к вероятности попадания случайного элемента в K (R (0)), большей 1/2 в соответствии с (14). Однако это рассуждение показывает лишь, что вероятность непустоты En (f)стремится к 1 при безграничном росте объема выборки. Точнее, оно показывает, что
Поэтому пойдем другим путем, не опирающимся к тому же на вероятностную модель выборки. Положим (17) Если х входит в дополнение шара K (HR (1)), то аналогично (15) имеем (18) При достаточно большом H из (17) и (18) следует, что
Следовательно, Argmin достаточно искать на K (HR (1)). Заключение теоремы 2 следует из того, что на бикомпактном пространстве K (HR (1))минимизируется непрерывная функция. Теорема 2 полностью доказана. О формулировках законов больших чисел. Пусть - независимые одинаково распределенные случайные элементы со значениями в Х. Закон больших чисел - это утверждение о сходимости эмпирических средних к теоретическому среднему (математическому ожиданию) при росте объема выборки n, т.е. утверждение о том, что (19) при . Однако и слева, и справа в формуле (19) стоят, вообще говоря, множества. Поэтому понятие сходимости в (19) требует обсуждения и определения. В силу классического закона больших чисел при (20) в смысле сходимости по вероятности, если правая часть существует (теорема А.Я. Хинчина, 1923 г.). Если пространство Х состоит из конечного числа элементов, то из соотношения (20) легко вытекает (см., например, [7, с.192-193]), что (21) Другими словами, является состоятельной оценкой . Если состоит из одного элемента, , то соотношение (21) переходит в следующее: (22) Однако с прикладной точки зрения доказательство соотношений (21) - (22) не дает достаточно уверенности в возможности использования в качестве оценки E (x,f). Причина в том, что в процессе доказательства объем выборки предполагается настолько большим, что при всех y X одновременно левые части соотношений (20) сосредотачиваются в непересекающихся окрестностях правых частей. Замечание. Если в соотношении (20) рассмотреть сходимость с вероятностью 1, то аналогично (21) получим т.н. усиленный закон больших чисел [7, с.193-194]. Согласно этой теореме с вероятностью 1 эмпирическое среднее входит в теоретическое среднее E(x,f), начиная с некоторого объема выборки n, вообще говоря, случайного, . Мы не будем останавливаться на сходимости с вероятностью 1, поскольку в соответствующих постановках, подробно разобранных в монографии [7], нет принципиальных отличий от случая сходимости по вероятности. Если Х не является конечным, например, Х = R 1 , то соотношения (21) и (22) неверны. Поэтому необходимо искать иные формулировки закона больших чисел. В классическом случае сходимости выборочного среднего арифметического к математическому ожиданию, т.е. , можно записать закон больших чисел так: для любого > 0 справедливо предельное соотношение (23) В этом соотношении в отличие от (21) речь идет о попадании эмпирического среднего = не непосредственно внутрь теоретического среднего E (x,f), а в некоторую окрестность теоретического среднего. Обобщим эту формулировку. Как задать окрестность теоретического среднего в пространстве произвольной природы? Естественно взять его окрестность, определенную с помощью какой-либо метрики. Однако полезно обеспечить на ее дополнении до Х отделенность множества значений Мf (x ( ) ,y) как функции y от минимума этой функции на всем Х. Поэтому мы сочли целесообразным определить такую окрестность с помощью самой функции Мf (x ( ) ,y). Определение 3. Для любого > 0 назовем -пяткой функции g(x) множество
Таким образом, в -пятку входят все те х, для которых значение g (x) либо минимально, либо отличается от минимального (или от инфимума – точной нижней грани) не более чем на . Так, для X = R 1 и функции g(x) = х 2 минимум равен 0, а -пятка имеет вид интервала . В формулировке (23) классического закона больших чисел утверждается, что при любом >0 вероятность попадания среднего арифметического в -пятку математического ожидания стремится к 1. Поскольку > 0 произвольно, то вместо -пятки можно говорить о -пятке, т.е. перейти от (23) к эквивалентной записи (24) Соотношение (24) допускает непосредственное обобщение на общий случай пространств произвольной природы. СХЕМА ЗАКОНА БОЛЬШИХ ЧИСЕЛ. Пусть - независимые одинаково распределенные случайные элементы со значениями в пространстве произвольной природы Х с показателем различия f: X 2 R 1. Пусть выполнены некоторые математические условия регулярности. Тогда для любого > 0 справедливо предельное соотношение (25) Аналогичным образом может быть сформулирована и общая идея усиленного закона больших чисел. Ниже приведены две конкретные формулировки "условий регулярности". Законы больших чисел. Начнем с рассмотрения естественного обобщения конечного множества - бикомпактного пространства Х. Теорема 3. В условиях теоремы 1 справедливо соотношение (25). Доказательство. Воспользуемся построенным при доказательстве теоремы 1 конечным открытым покрытием { Z 1, Z 2 ,..., Zk } пространства Х таким, что для него выполнено соотношение (3). Построим на его основе разбиение Х на непересекающиеся множества W 1, W 2 ,..., Wm (объединение элементов разбиения W 1, W 2 ,..., Wm составляет Х). Это можно сделать итеративно. На первом шаге из Z 1 следует вычесть Z 2 ,..., Zk - это и будет W 1. Затем в качестве нового пространства надо рассмотреть разность Х и W 1, а покрытием его будет { Z 2 ,..., Zk }. И так до k -го шага, когда последнее из рассмотренных покрытий будет состоять из единственного открытого множества Zk. Остается из построенной последовательности W 1, W 2 ,..., Wk вычеркнуть пустые множества, которые могли быть получены при осуществлении описанной процедуры (поэтому, вообще говоря, m может быть меньше k). В каждом из элементов разбиения W 1, W 2 ,..., Wm выберем по одной точке, которые назовем центрами разбиения и соответственно обозначим w 1, w 2 ,..., wm. Это и есть то конечное множество, которым можно аппроксимировать бикомпактное пространство Х. Пусть y входит в Wj. Тогда из соотношения (3) вытекает, что (26) Перейдем к доказательству соотношения (25). Возьмем произвольное >0. Рассмотрим некоторую точку b из E (x,f). Доказательство будет основано на том, что с вероятностью, стремящейся к 1, для любого y вне выполнено неравенство (27) Для обоснования этого неравенства рассмотрим все элементы разбиения W 1, W 2 ,..., Wm, имеющие непустое пересечение с внешностью -пятки . Из неравенства (26) следует, что для любого y вне левая часть неравенства (27) не меньше (28) где минимум берется по центрам всех элементов разбиения, имеющим непустое пересечение с внешностью -пятки. Возьмем теперь в каждом таком разбиении точку vi, лежащую вне δ-пятки . Тогда из неравенств (3) и (28) следует, что левая часть неравенства (27) не меньше (29) В силу закона больших чисел для действительнозначных случайных величин каждая из участвующих в соотношениях (27) и (29) средних арифметических имеет своими пределами соответствующие математические ожидания, причем в соотношении (29) эти пределы не менее
поскольку точки vi лежат вне -пятки . Следовательно, при
и достаточно большом n, обеспечивающем необходимую близость рассматриваемого конечного числа средних арифметических к их математическим ожиданиям, справедливо неравенство (27). Из неравенства (27) следует, что пересечение En (f) с внешностью пусто. При этом точка b может входить в En (f), а может и не входить. Во втором случае En (f) состоит из иных точек, входящих в . Теорема 3 доказана. Если Х не является бикомпактным пространством, то необходимо суметь оценить рассматриваемые суммы "на периферии", вне бикомпактного ядра, которое обычно выделяется естественным путем. Один из возможных комплексов условий сформулирован выше в теореме 2. Теорема 4. В условиях теоремы 2 справедлив закон больших чисел, т.е. соотношение (25). Доказательство. Будем использовать обозначения, введенные в теореме 2 и при ее доказательстве. Пусть r и R, r < R, - положительные числа. Рассмотрим точку х в шаре K (r) и точку y вне шара K (R). Поскольку
то (30) Положим
Сравним и . Выборку разобьем на две части. В первую часть включим те элементы выборки, которые входят в K (r), во вторую - все остальные (т.е. лежащие вне K(r)). Множество индексов элементов первой части обозначим I = I(n,r). Тогда в силу неотрицательности f имеем
а в силу неравенства (30)
где Card I (n,r) - число элементов в множестве индексов I (n,r). Следовательно, (31) где J = Card I (n,r) - биномиальная случайная величина B (n,p) с вероятностью успеха p = P { }. По теореме Хинчина для справедлив (классический) закон больших чисел. Пусть . Выберем так, чтобы при было выполнено соотношение (32) где Выберем r так, чтобы вероятность успеха p > 0,6. По теореме Бернулли можно выбрать так, чтобы при (33) Выберем R так, чтобы
Тогда (34) и согласно (31), (32) и (33) при с вероятностью не менее имеем (35) для любого y вне K (R). Из (34) следует, что минимизировать достаточно внутри бикомпактного шара K (R), при этом En (f) не пусто и (36) с вероятностью не менее 1-2 . Пусть и - сужения и g(x) = Mf(x( ), x) соответственно на K(R) как функций от х. В силу (34) справедливо равенство Согласно доказанной выше теореме 3 найдется такое, что
Согласно (36) с вероятностью не менее
при Следовательно, при имеем
что и завершает доказательство теоремы 4. Справедливы и иные варианты законов больших чисел, полученные, в частности, в статье [21]. Медиана Кемени и экспертные оценки. Рассмотрим на основе развитой выше теории частный случай пространств нечисловой природы - пространство бинарных отношений на конечном множестве и его подпространства. Как известно, каждое бинарное отношение А можно описать матрицей || a(i,j) || из 0 и 1, причем a(i,j) = 1 тогда и только тогда qi и q j находятся в отношении А, и a(i,j) = 0 в противном случае. Определение 4. Расстоянием Кемени между бинарными отношениями А и В, описываемыми матрицами || a(i,j) || и || b(i,j) || соответственно, называется
Замечание. Иногда в определение расстояния Кемени вводят множитель, зависящий от k. Определение 5. Медианой Кемени для выборки, состоящей из бинарных отношений, называется эмпирическое среднее, построенное с помощью расстояния Кемени. Поскольку число бинарных отношений на конечном множестве конечно, то эмпирические и теоретические средние для произвольных показателей различия существуют и справедливы законы больших чисел, описанные формулами (21) и (22) выше. Бинарные отношения, в частности, упорядочения, часто используются для описания мнений экспертов. Тогда расстояние Кемени измеряет близость мнений экспертов, а медиана Кемени позволяет находить итоговое усредненное мнение комиссии экспертов. Расчет медианы Кемени обычно включают в информационное обеспечение систем принятия решений с использованием оценок экспертов. Речь идет, например, о математическом обеспечении автоматизированного рабочего места "Математика в экспертизе" (АРМ "МАТЭК"), предназначенного, в частности, для использования при проведении экспертиз в задачах экологического страхования. Поэтому представляет большой практический интерес численное изучение свойств медианы Кемени при конечном объеме выборки. Такое изучение дополняет описанную выше асимптотическую теорию, в которой объем выборки предполагается безгранично возрастающим ( ). Компьютерное изучение свойств медианы Кемени при конечных объемах выборок. С помощью специально разработанной программной системы В.Н. Жихаревым был проведен ряд серий численных экспериментов по изучению свойств выборочных медиан Кемени. Представление о полученных результатах дается приводимой ниже табл.5, взятой из статьи [22]. В каждой серии методом статистических испытаний определенное число раз моделировался случайный и независимый выбор экспертных ранжировок, а затем находились все медианы Кемени для смоделированного набора мнений экспертов. При этом в сериях 1-5 распределение ответа эксперта предполагалось равномерным на множестве всех ранжировок. В серии 6 это распределение являлось монотонным относительно расстояния Кемени с некоторым центром (о понятии монотонности см. выше), т.е. вероятность выбора определенной ранжировки убывала с увеличением расстояния Кемени этой ранжировки от центра. Таким образом, серии 1-5 соответствуют ситуации, когда у экспертов нет почвы для согласия, нет группировки их мнений относительно некоторого единого среднего группового мнения, в то время как в серии 6 есть единое мнение - описанный выше центр, к которому тяготеют ответы экспертов. Результаты, приведенные в табл.5, можно комментировать разными способами. Неожиданным явилось большое число элементов в выборочной медиане Кемени - как среднее, так и особенно максимальное. Одновременно обращает на себя внимание убывание этих чисел при росте числа экспертов и особенно при переходе к ситуации реального существования группового мнения (серия 6). Достаточно часто один из ответов экспертов входит в медиану Кемени (т.е. пересечение множества ответов экспертов и медианы Кемени непусто), а диаметр медианы как множества в пространстве ранжировок заметно меньше диаметра множества ответов экспертов. По этим показателям - наилучшее положение в серии 6. Грубо говоря, всяческие "патологии" в поведении медианы Кемени наиболее резко проявляются в ситуации, когда ее применение не имеет содержательного обоснования, т.е. когда у экспертов нет основы для согласия, их ответы равномерно распределены на множестве ранжировок. Таблица 5. Вычислительный эксперимент по изучению свойств медианы Кемени
Увеличение числа испытаний в 10 раз при переходе от серии 1 к серии 5 не очень сильно повлияло на приведенные в таблице характеристики, поэтому представляется, что суть дела выявляется при числе испытаний (в методе Монте-Карло), равном 100 или даже 50. Увеличение числа объектов или экспертов увеличивает число элементов в рассматриваемом пространстве ранжировок, а потому уменьшается частота попадания какого-либо из мнений экспертов внутрь медианы Кемени. А также отношение диаметра медианы к диаметру множества экспертов и число элементов медианы Кемени (среднее и максимальное). Можно сказать, что увеличение числа объектов или экспертов уменьшает степень дискретности задачи, приближает ее к непрерывному случаю, а потому уменьшает выраженность различных "патологий". Есть много интересных результатов, которые здесь не рассматриваем. Они связаны, в частности, со сравнением медианы Кемени с другими методами усреднения мнений экспертов, например, с нахождением итогового упорядочения по методу средних рангов [10]. А также с использованием малых окрестностей ответов экспертов для поиска входящих в медиану ранжировок, с теоретической и численной оценкой скорости сходимости в законах больших чисел. Date: 2016-05-23; view: 471; Нарушение авторских прав |