Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Показательное (экспоненциальное) распределение. Функция надежности





 

Аналогом закона Пуассона для непрерывных случайных величин служит показательный (экспоненциальный) закон, функция плотности распределения которого имеет вид

где l > 0 – постоянный параметр.

Функция распределения (интегральная функция) показательного закона

т. е.

Вероятность попадания случайной величины Х в интервал (a, b) составляет

т. е.

Определим числовые характеристики показательного закона распределения:

математическое ожидание

дисперсия

среднее квадратичное отклонение

т.е.

Если Т – непрерывная случайная величина, выражающая продолжительность времени безотказной работы какого-либо элемента, а l – интенсивность отказов (среднее число отказов в единицу времени), то продолжительность времени t безотказной работы этого элемента можно считать случайной величиной, распределённой по показательному закону с функцией распределения (l > 0), которая определяет вероятность отказа элемента за время t.

Функция надежности R (t) определяет вероятность безотказной работы элемента за время t:

 







Date: 2016-05-16; view: 305; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию