Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Вимірювальні перетворювачі струму та напруги





2.1.1 Електромеханічні: магнітоелектричні та електромагнітні перетворювачі.

 

2.1.1 Електромеханічні: магнітоелектричні та електромагнітні перетворювачі

Струми і напруги потрібно вимірювати у дуже широко­му діапазоні. Вимірювальні прилади не здатні перекрити цей діапазон. Для розширення діапазону вимірювання за­стосовують вимірювальні перетворювачі. Вимірюваль­ний прилад, що має у своєму складі вимірювальний пере­творювач, перекриває динамічний діапазон у десятки, сотні і навіть тисячі разів більший, ніж вимірювальний прилад без вимірювального перетворювача.

Вимірювальні перетворювачі струму і напруги кла­сифіковано за такою схемою:

 
 
Схема 2.1.1.1

Електромеханічні вимірювальні перетворювачі

В електромеханічних перетворювачах вимірювана ве­личина (найчастіше напруга чи струм) перетворюється в кутове переміщення рухомої частини приладу. Електроме­ханічні перетворювачі поділяються за принципом дії на такі групи: магнітоелектричні; електромагнітні; електродинамічні (і феродинамічні); електро­статичні; індукційні.

Перетворювачі магнітоелектричної системи застосо­вують для вимірювання постійних струмів і напруг (ампер­метри та вольтметри), опорів (омметри), заряду (гальвано­метри і кулонметри). Магнітоелектричні перетворювачі розрізняють за таким принципом: із зовнішнім магнітом (рис. 2.1.1.1, а) і магнітом всередині рамки (рис. 2.1.1.1, б).

Основними частинами магнітоелектричного приладу є: нерухомий постійний магніт 1 для створення в зазорі од­норідного магнітного поля; котушка 2, що може оберта­тися навколо осі; спіральні пружини З, призначені для створення моменту протидії та для забезпечення елект­ричного контакту між рухомою котушкою та нерухомою

 
 

вимірювальною схемою; стрілка 4, яка жорстко зв'язана з рухомою котушкою, та шкала з нанесеними поділками і цифрами.

 
 
Рис. 2.1.1.1

 


Принцип дії приладів магнітоелектричної системи ґрун­тується на взаємодії магнітного поля постійного магніту зі струмами у провідниках обмотки рухомої котушки. Згідно із законом Ампера на кожен провідник обмотки довжиною l зі струмом І, що знаходиться в магнітному полі з індукцією В, діє сила, яка визначається за формулою

F=B·I·l·sinα

де α — кут між напрямом струму І та індукції В. Прила­ди магнітоелектричної системи сконструйовані так, що магнітне поле спрямоване радіально до осі обертання, і то­му а=90°.

Кожен виток рухомої котушки складається з двох провідників з протилежним, напрямом струму, тобто на кожен виток діє пара сил однакового значення з проти­лежними напрямами, які створюють обертальний момент відносно осі: Ме=FD, де D — відстань між протилежни­ми сторонами рамки.

Обертальний момент, що діє на котушку, — це сумар­ний момент усіх її витків:

 

де с — конструктивна стала, N — кількість витків, Мв — момент одного витка.

Таким чином, момент, що діє на рухому котушку, пря­мо пропорційний струму в провідниках котушки.

 

Спіральні пружини створюють момент протидії, що прямо пропорційний куту повороту рамки:

Mпр=k·α

Стрілка зупиняється тоді, коли моменти врівноважу­ються, тобто

M=Mпр

с·I=k·α

Кут відхилення стрілки ά прямо пропорційний вимірю­ваному струму:

 

Шкалу проградуйовано у значеннях вимірюваної величини і тому результат вимірювання визначають за показами стрілки.

Вимірювальні прилади магнітоелектричної системи ма­ють лінійну шкалу, високу чутливість, Рисо споживають енергії, стійкі до дії зовнішніх магнітних полів.

До недоліків цих приладів належить Риса здатність до пе­ревантажень, а також те, що приладами цієї системи можна виконувати вимірювання тільки у колах постійного струму.

Магнітоелектричні прилади з перетворювачем. Як уже зазначалося, магнітоелектричні прилади мають висо­ку точність, чутливість і незначне споживання енергії, але вони непридатні для безпосереднього використання у ко­лах змінного струму. Для усунення цього недоліку їх ви­користовують разом з додатковими вимірювальними пере­творювачами змінного струму в постійний. На практиці здебільшого використовуються випрямні та термо­електричні перетворювачі.

Випрямні прилади складаються з випрямного вимірю­вального перетворювача змінного струму в постійний і магнітоелектричного приладу. Випрямні перетворювачі можуть бути однопівперіодні та двопівперіодні.

Принцип дії випрямних перетворювачів ґрунтується на односторонній провідності напівпровідникового діода, завдяки чому змінний струм перетворюється в пульсую­чий струм однієї полярності.

Недоліком випрямних приладів є нелінійність вольт-амперної характеристики діодів, нестабільність цієї ха­рактеристики у часі та залежність її від температури і частоти.

На основі магнітоелектричного приладу з випрямними перетворювачами донедавна випускалися Рисогабаритні багатофункціональні електромеханічні прилади (тестери), які широко застосовувалися на практиці. Значна кількість таких приладів знаходиться в експлуатації і дотепер. Останнім часом такі прилади витісняються аналогічними за функціями, але більш точними і з більшими функціональними можливостями, цифровими тестерами кишенькового формату.

Прилади електромагнітної системи застосовуються для вимірювання постійних і змінних струмів і напруг, а та­кож для вимірювання частоти і кута зсуву фаз у колах змінного струму.

 

Електромагнітний прилад складається: з ко­тушки 1 із щілиноподібним отвором; феромагнітного осер­дя 2, несиметрично закріпленого на осі; стрілки 3, при­кріпленої до осі; спіральної пружини 4, яка створює мо­мент протидії.

 

 

 
 
Рис. 2.1.1.2

 

 


Дія електромагнітного приладу ґрунтується на взаємо­дії магнітного поля котушки з рухомим феромагнітним осердям.

Внаслідок цієї взаємодії осердя втягується в котушку і рухома вісь повертається на деякий кут під дією оберталь­ного моменту, який пропорційний квадрату струму:

М=кмІ2.

Момент протидії пружини прямо пропорційний куту повороту осі, на якій закріплена стрілка і осердя

Мпр=kпрα.

Стрілка зупиняється, коли моменти врівноважуються: М=Мпр. Тоді кут повороту, на який відхилилася стрілка,

α= км/ kпр · І2

прапорційний квадрату струму, і тому шкала електро­магнітних приладів нерівномірна.

У амперметрів електромагнітної системи котушка виго­товляється з невеликою кількістю витків проводу, що має великий поперечний переріз (для зменшення опору котушки).

У вольтметрів, навпаки, котушка виготовляється з тон­кого проводу 0,08...0,1 мм і має велику кількість витків (2000...10000).

До переваг електромагнітних приладів належать їхня простота, дешевизна, надійність, здатність витримувати короткочасні навантаження, а також придатність для вимірювання в колах змінного й постійного струму.

Недоліками приладів електромагнітної системи є порівняно низька точність, нерівномірність шкали, досить велика споживана потужність, залежність показів від частоти та впливу зовнішніх магнітних полів.

Зміст

Date: 2016-01-20; view: 1297; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию